Skip to main content

Environment in Time and Space: Opportunities from Tree-Ring Isotope Networks

  • Chapter
  • First Online:
Isoscapes

Abstract

Light stable isotopes in plants have been related to various climate parameters such as temperature, precipitation, relative humidity, and soil moisture, and to ecophysiological variables such as photosynthetic rate, stomatal conductance and intrinsic water-use efficiency. By collecting radial growth rings of trees in networks, it is not only possible to characterize these variables around the geographical area, but also to reconstruct the variation of these parameters through time. The real power of dendrochronologically dated tree rings is in providing certainty in assignment of an isotopic value to a particular year and perhaps even a sub-annual period. Additionally, the growth rings integrate isotopic signals from around the tree crown and may smooth out some of the high intra-crown variability associated with microenvironments. Furthermore, woody plants are widespread on six of seven continents, thereby supporting widespread opportunities for network development. Examples of existing and emerging tree-ring isotope networks on three continents are used to illustrate the findings, successes and limitations of this methodology. The goals of such studies will ultimately determine the methods used in developing the network, but analysis of multiple, dendrochronologically dated trees at each site, sampling of the same species at all sites, and analysis of the same wood component in all trees would be ideal in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneth A, Lloyd J, Å antru˙ˇcková H, Bird M, Grigoryev S, Kalaschnikov YN, Gleixner G, Schulze E-D (2002) Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeoch Cycles 16(1):1005. doi:10.1029/2000GB001374

    Article  Google Scholar 

  • Augusti A, Betson TR, Schleucher J (2006) Hydrogen exchange during cellulose synthesis distinguishes climatic and biochemical isotope fractionations in tree rings. New Phytol 172:490–499

    Article  CAS  Google Scholar 

  • Augusti A, Betson TR, Schleucher J (2008) Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings. Chem Geol 252:1–8

    Article  CAS  Google Scholar 

  • Battipaglia G, Jaeggi M, Saurer M, Siegwolf RTW, Cotrufo MF (2008) Climatic sensitivity of δ18O in the wood and cellulose of tree rings: results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Palaeogeogr Palaeoclimatol Palaeoecol 261:193–202

    Article  Google Scholar 

  • Becker B (1979) Holocene tree-ring series from southern central Europe for archaeological dating, radiocarbon calibration, and stable isotope analysis. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California Press, Berkeley, CA

    Google Scholar 

  • Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen, E Jungner H, Masson-Delmotte V, Stievenard M, Guillemin M-T, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612

    Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 2, spatio-temporal variability and associated climate patterns. Holocene 12:759–789

    Article  Google Scholar 

  • Buentgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Clim 19:5606–5623

    Article  Google Scholar 

  • Bukata AR, Kyser TK (2005) Response of the nitrogen isotopic composition of tree-rings following tree-clearing and land-use change. Environ Sci Technol 39:7777–7783

    Article  CAS  Google Scholar 

  • Burk RL, Stuiver M (1981) Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science 211:1417–1419

    Article  CAS  Google Scholar 

  • Chen T, Qin D, Li J, Ren J, Liu X, Sun W (2000) Study on climatic significance of fir tree-ring δ13C from Zhaosu country of Xinjiang region, China. J Glaciol Geocryol 22(4):347–352

    Google Scholar 

  • Chen T, Qin D, Liu X, Li J, Ren J, Sun W (2002) Tree-ring δ13C records in the Little Ice Age in Altay prefecture of Xinjiang region. J Glaciol Geocryol 24(1):83–86

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Woodhouse C, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018

    Article  CAS  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Dupouey J-L, Leavitt S, Choisnel E, Jourdain S (1993) Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant Cell Environ 16:939–947

    Article  CAS  Google Scholar 

  • Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723

    Article  CAS  Google Scholar 

  • Edwards TWD, Graf W, Trimborn P, Stichler W, Lipp J, Payer HD (2000) δ13C response surface resolves humidity and temperature signals in trees. Geochim Cosmochim Acta 64:161–167

    Article  CAS  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing of past temperature variability. Science 295:2250–2253

    Article  CAS  Google Scholar 

  • Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34, doi: 10.1029/2007GL030844

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Feng X (1999) Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochim Cosmochim Acta 63:1891–1903

    Article  CAS  Google Scholar 

  • Ferguson CW, Graybill DA (1983) Dendrochronology of bristlecone pine: a progress report. Radiocarbon 24:287–288

    Google Scholar 

  • Francis JE (1986) Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. Palaeontology 29(4):665–684

    Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193

    CAS  Google Scholar 

  • Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454

    Article  Google Scholar 

  • Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–1122

    CAS  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York

    Google Scholar 

  • Gagen M, McCarroll D, Edouard JL (2004) Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps. Arct Antarct Alp Res 36:166–171

    Article  Google Scholar 

  • Gagen M, McCarroll D, Edouard J-L (2006) Combining ring width, density, and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Clim Change 78:363–379

    Article  CAS  Google Scholar 

  • Gagen M, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446

    Article  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    Article  CAS  Google Scholar 

  • Hemming DL, Switsur VR, Waterhouse JS, Heaton THE, Carter AHC (1998) Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B:25–33

    CAS  Google Scholar 

  • ITRDB, International Tree-Ring Data Bank (2009) IGBP PAGES/World Data Center for Paleoclimatology. NOAA/NCDC Paleoclimatology Program, Boulder, Colorado, USA. http://www.ncdc.noaa.gov/paleo/treering.html Jan. 20, 2009

  • Kagawa A, Sugimoto A, Maximov TC (2006) Seasonal course of translocation, storage, and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol 171:793–804

    Article  CAS  Google Scholar 

  • Kirdyanov AV, Treydte K, Nikolaev A, Helle G, Schleser GH (2008) Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia. Chem Geol. doi:10.1016/j.chemgeo.2008.01.023

    Google Scholar 

  • Leavitt SW (2007) Regional expression of the 1988 U.S. Midwest drought in seasonal δ13C of tree rings. J Geophys Res-Atmos 112, D06107, doi:10.1029/2006JD007081

    Google Scholar 

  • Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311:145–147

    Article  CAS  Google Scholar 

  • Leavitt SW, Long A (1986) Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010

    Article  CAS  Google Scholar 

  • Leavitt SW, Long A (1988) Stable carbon isotope chronologies from trees in the southwestern United States. Global Biogeochem Cycles 2:189–198

    Article  CAS  Google Scholar 

  • Leavitt SW, Long A (1989a) Drought indicated in carbon-13/carbon-12 ratios of southwestern tree rings. Water Resour Bull 25:341–347

    Article  Google Scholar 

  • Leavitt SW, Long A (1989b) Intertree variability of δ13C in tree rings. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, Chapter 7

    Google Scholar 

  • Leavitt SW, Long A (1989c) The atmospheric δ13C record as derived from 56 pinyon trees at 14 sites in the southwestern U.S. Radiocarbon 31:469–474

    Google Scholar 

  • Leavitt SW, Wright WE, Long A (2002) Spatial expression of ENSO, drought and summer monsoon in seasonal δ13C of ponderosa pine tree rings in southern Arizona and New Mexico. J Geophys Res 107 (D18) 4349, doi:10.1029/2001JD001312

    Google Scholar 

  • Leavitt SW, Chase TN, Rajagopalan B, Lee E, Lawrence PJ, Woodhouse CA (2007) Southwestern U.S. drought maps from pinyon tree-ring carbon isotopes. Eos Tran Am Geophys Union 88(4):39–40

    Google Scholar 

  • Liu W, Feng X, Liu Y, Zhang Q, An Z (2004a) δ18O values of tree rings as a proxy of monsoon precipitation in arid Northwest China. Chem Geol 206:73–80

    Article  CAS  Google Scholar 

  • Liu X, Shao X, Liang E, Zhao L, Chen T, Qin D, Ren J (2007a) Species-dependent responses of juniper and spruce to increasing CO2 concentration and to climate in semi-arid and arid areas of northwestern China. Plant Ecol 193:195–209

    Article  Google Scholar 

  • Liu X, Shao X, Wang L, Zhao L, Wu P, Chen T, Qin D, Ren J (2007b) Climatic significance of the stable carbon isotope composition of tree-ring cellulose: comparison of Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast) in a temperate-moist region of China. Sci China Ser D 50(7):1076–1085

    Article  CAS  Google Scholar 

  • Liu Y, Leavitt S, Wu X, Hughes M (1996) Stable carbon isotope in tree rings from Huangling, China, and climatic variation. Sci China Ser D 39(2):152–161

    Google Scholar 

  • Liu Y, Ma L, Cai Q, An Z, Liu W, Gao L (2002) Reconstruction of summer temperature (June- August) at Mt. Helan, China, from tree-ring stable carbon isotope values since AD 1890. Sci China Ser D 45(12):1127–1136

    Google Scholar 

  • Liu Y, Ma L, Leavitt S, Cai Q, Liu W (2004b) Seasonal precipitation reconstruction from tree-ring stable carbon isotopes for Mt. Helan, China since AD 1800. Glob Planet Change 41:229–239

    Article  Google Scholar 

  • Liu Y, Cai Q, Liu W, Yang Y, Sun J, Song H, Li X (2008) Monsoon precipitation variation recorded by tree-ring δ18O in arid Northwest China since 1878 AD. Chem Geol. doi:10.1016/j.chemgeo.2008.01.024

    Google Scholar 

  • Marshall JD, Monserud RA (1996) Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105:13–21

    Article  Google Scholar 

  • Marshall JD, Monserud RA (2006) Co-occurring species differ in tree-ring δ18O trends. Tree Physiol 26:1055–1066

    Article  CAS  Google Scholar 

  • Martin B, Sutherland EK (1990) Air pollution in the past recorded in width and stable carbon isotope composition of annual growth rings of Douglas-fir. Plant Cell Environ 13:839–844

    Article  CAS  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Q Sci Rev 23:771–801

    Article  Google Scholar 

  • McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen M, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O (2003) Mulitproxy dendroclimatology: a pilot study in northern Finland. Holocene 13:829–838

    Article  Google Scholar 

  • McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer A, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta 73:1539–1547

    Google Scholar 

  • McDowell NG, Brooks JR, Fitzgerald SA, Bond BJ (2003) Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant Cell Environ 26:631–644

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Monserud RA, Marshall JD (2001) Time-series analysis of δ13C from tree rings. I. Time trends and autocorrelation. Tree Physiol 21:1087–1102

    Article  CAS  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper No. 45, US Weather Bureau (NOAA Library and Information Services Division, Washington, DC 20852)

    Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Clim 6:293–335

    Article  Google Scholar 

  • Robertson I, Rolfe J, Switsur VR, Carter AHC, Hall MA, Barker AC, Waterhouse JS (1997) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland. Geophys Res Lett 24:1487–1490

    Article  CAS  Google Scholar 

  • Robertson I, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21–31

    Article  CAS  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR (1999) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree ring cellulose. Geochim Cosmochim Acta 64:21–35

    Article  Google Scholar 

  • Rozanski K, Arguas-Arguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK et al. (eds) Climate change in continental isotopic records. Geophys Monogr 78:1–36

    Article  Google Scholar 

  • Sakata M, Suzuki K (2000) Evaluating causes for the decline of Japanese fir (Abies firma) forests based on δ13C records of annual growth rings. Environ Sci Technol 33:373–376

    Article  Google Scholar 

  • Saurer M, Siegenthaler U (1989) 13C/12C ratios in tree are sensitive to relative humidity. Dendrochronologia 7:9–13

    Google Scholar 

  • Saurer M, Aellen K, Siegwolf R (1997) Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ 20:1543–1550

    Article  Google Scholar 

  • Saurer M, Schweingruber F, Vaganov EA, Shiyatov SG, Siegwolf R (2002) Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys Res Lett 29. doi:10.1029/2001GL013739

    Google Scholar 

  • Saurer M, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Chang Biol 10:2109–2120

    Article  Google Scholar 

  • Savard MM, Begin C, Parent M, Smirnoff A, Marion J (2004) Effects of smelter sulfur dioxide emissions: a spatiotemporal perspective using carbon isotopes in tree rings. J Environ Qual 33:13–25

    Article  CAS  Google Scholar 

  • Savard MM, Bégin C, Smirnoff A, Marion J, Sharp Z, Parent M (2005) Fractionation change of hydrogen isotopes in trees due to atmospheric pollutants. Geochim Cosmochim Acta 69:3723–3731

    Article  CAS  Google Scholar 

  • Schweingruber FH (1987) Tree rings: basic applications to dendrochronology. D. Reidel (Kluwer), Dordrecht, The Netherlands

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment – dendroecology. Haupt, Frankfurt, Germany

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Stuiver M, Braziunas TF (1987) Tree cellulose 13C/12C isotope ratios and climate change. Nature 328:58–60

    Article  CAS  Google Scholar 

  • Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruce (Lötschental, Swiss Alps) – a case study with respect to altitude, exposure and soil moisture. Tellus 53B:593–611

    CAS  Google Scholar 

  • Treydte K, Schleser GH, Helle G, Frank D, Winiger M, Haug G, Esper J (2006) The 20th century was the wettest period in northern Pakistan over the past millennium. Nature 44:1179–1182

    Article  Google Scholar 

  • Treydte K, Frank D, Esper J, Andreu L, Bednarz Z, Berninger F, Boettger T, D’Alessandro CM, Etien N, Filot M, Grabner M, Guillemin MT, Gutierrez E, Haupt M, Helle G, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Saurer M, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M, Schleser GH (2007) Signal strength and climate calibration of a European tree-ring isotope network. Geophys Res Lett 34. doi:10.1029/2007GL031106

    Google Scholar 

  • Treydte, K, Frank, DC, Saurer, M, Helle, G, Schleser, GH, Esper J (2009) Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochim Cosmochim Acta 73:4635–4647

    Google Scholar 

  • Van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Robertson I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430

    Article  CAS  Google Scholar 

  • Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004) Northern European trees show a progressive diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • Wright WE, Leavitt SW (2006) Boundary layer humidity reconstruction for a semiarid location from tree ring cellulose δ18O. Geophys Res Lett 111:D18105. doi:10.1029/2005JD006806

    Google Scholar 

  • Xu H, Hong Y, Zhu Y, Liu G (2002) Information on climate change recorded in δ13C and δ18O series of Pinus Koraiensis tree ring cellulose in Antu area. Geol-Geochem 30(2):59–65

    CAS  Google Scholar 

  • Xu H, Hong Y, Zhu Y, Liu G (2003) Information about low cloud amount recorded in δ13C series of tree ring cellulose of Pinus Koraiensis in Antu area, Jilin. Chin J Geochem 22(1):30–37

    Article  CAS  Google Scholar 

  • Zhao X, Wang J, Qian J, Zeng Z (2006) Differences of δ13C annual series among Cryptomeria fortunei tree rings at Tianmu Mountain. Chin J ApplEcol 17(3):362–367

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Leavitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leavitt, S.W., Treydte, K., Yu, L. (2010). Environment in Time and Space: Opportunities from Tree-Ring Isotope Networks. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_6

Download citation

Publish with us

Policies and ethics