Skip to main content

La dose in tomografia computerizzata

  • Chapter
  • 696 Accesses

Part of the book series: Imaging & Formazione ((IMAG))

Riassunto

La tomografia computerizzata (TC) rappresenta una tecnica diagnostica fondamentale della medicina moderna che, a partire dalla sua introduzione nei primi anni Settanta [1] ha conosciuto uno sviluppo estremamente rapido e un’enorme espansione delle sue indicazioni cliniche. Tuttavia, a tale diffusione della TC si è accompagnato un parallelo aumento della dose radiante erogata alla popolazione: infatti, se nel 2000 il numero di esami TC eseguiti annualmente negli Stati Uniti era 40 milioni, nel 2010 tale numero superava i 70 milioni. Inoltre, benché gli esami TC rappresentino circa il 10% degli esami radiologici eseguiti annualmente, essi possono essere responsabili fino a circa la metà della dose radiante complessiva erogata alla popolazione. Ciò pone il problema sia di restringere l’impiego della TC a campi in cui esso sia indispensabile (giustificazione), sia di ridurre il più possibile la dose radiante erogata, compatibilmente con la necessità di ottenere informazioni diagnostiche valide in rapporto al quesito clinico (ottimizzazione) [2–6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Hounsfield GH (1973) Computerized transverse axial scanning (tomography): description of the system. Br J Radiol 46:1016–1022

    Article  PubMed  CAS  Google Scholar 

  2. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 29:2277–2284

    Article  Google Scholar 

  3. Brenner DJ (2010) Should we be concerned about the rapid increase in CT usage? Re v Environ Health 25:63–68

    Google Scholar 

  4. Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815

    Article  PubMed  CAS  Google Scholar 

  5. Mahesh M (2010) Medical radiation exposure with focus on CT. Rev Environ Health 25:69–74

    Article  PubMed  Google Scholar 

  6. Faggioni L, Paolicchi F, Neri E (2010) Elementi di tomografia computerizzata. Springer, Milano

    Book  Google Scholar 

  7. Kalender WA (2006) Computed Tomography: fundamentals, systems technology, image quality, applications. Publicis MCD Verlag, Erlangen, Munich

    Google Scholar 

  8. Buzug TM (2008) Computed Tomography. From photon statistics to modern cone-beam CT. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  9. Heiken JP, Brink JA, Vannier MW (1993) Spiral (helical) CT. Radiology 189:647–656

    PubMed  CAS  Google Scholar 

  10. Brink JA, Heiken JP, Wang G et al (1994) Helical CT: principles and technical considerations. Radiographics 14:887–893

    PubMed  CAS  Google Scholar 

  11. Brink JA (1995) Technical aspects of helical (spiral) CT. Radiol Clin North Am 33:825–841

    PubMed  CAS  Google Scholar 

  12. Flohr TG, Schaller S, Stierstorfer K et al (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235:756–773

    Article  PubMed  Google Scholar 

  13. Rydberg J, Buckwalter KA, Caldemeyer KS et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  14. Baert AL, Knauth M, Sartor K (2009) Multislice CT. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  15. Dalrymple NC, Prasad SR, El-Merhi FM, Chintapalli KN (2007) Price of isotropy in multidetector CT. Radiographics 27:49–62

    Article  PubMed  Google Scholar 

  16. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    PubMed  Google Scholar 

  17. Faggioni L, Neri E, Cerri F et al (2011) Inte grating image processing in PACS. Eur J Radiol 78:210–224

    Article  PubMed  Google Scholar 

  18. Lauer MS (2009) Elements of danger — the case of medical imaging. N Engl J Med 361:841–843

    Article  PubMed  CAS  Google Scholar 

  19. Thomas KE (2011) CT utilization — trends and developments beyond the United States’ borders. Pediatr Radiol 41(2):562–566

    Article  PubMed  Google Scholar 

  20. Coakley FV, Gould R, Yeh BM, Arenson RL (2011) CT radiation dose: what can you do right now in your practice? Am J Roentgenol 196:619–625

    Article  Google Scholar 

  21. Catalano C, Francone M, Ascarelli A et al (2007) Optimizing radiation dose and image quality. Eur Radiol 17:F26–F32

    Article  PubMed  Google Scholar 

  22. Jaffe TA, Yoshizumi TT, Toncheva G et al (2009) Radiation dose for body CT protocols: variability of scanners at one institution. Am J Roentgenol 193:1141–1147

    Article  Google Scholar 

  23. Jaffe TA, Hoang JK, Yoshizumi TT et al (2010) Radiation dose for routine clinical adult brain CT Variability on different scanners at one institution. Am J Roentgenol 195:433–438

    Article  Google Scholar 

  24. Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 194:191–199

    Article  Google Scholar 

  25. Tsapaki V, Aldrich JE, Sharma R et al (2006) Dose reduction in CT while maintaining diagnostic confidence: diagnostic reference levels at routine head, chest, and abdominal CT — IAEA-coordinated research project. Radiology 240:828–834

    Article  PubMed  Google Scholar 

  26. Wrixon AD (2008) New ICRP recommendations. J Radiol Prot 28:161–168

    Article  PubMed  CAS  Google Scholar 

  27. Rosenstein M (2008) Diagnostic reference levels for medical exposure of patients: ICRP guidance and related ICRU quantities. Health Phys 95:528–534

    Article  PubMed  CAS  Google Scholar 

  28. Clarke R, Valentin J; International Commission on Radiological Protection Task Group (2009) Application of the Commission’s Recommendations for the protection of people in emergency exposure situations. ICRP publication 109 Ann ICRP 39:1–110

    PubMed  Google Scholar 

  29. McCollough CH (2010) Diagnostic reference levels. http://www.imagewisely.org/∼/media/Image-Wisely%20Files/Medical%20Physicist%20Articles/IW%20McCullough%20Diagnostic%20Reference%20Levels.pdf. Ultimo accesso 7 aprile 2012

  30. Neri E, Faggioni L, Cerri F, Turini F et al (2010) CT colonography versus double-contrast barium enema for screening of colorectal cancer: comparison of radiation burden. Abdom Imaging 35:596–601

    Article  PubMed  Google Scholar 

  31. Stevenson G (2008) Colon imaging in radiology departments in 2008: goodbye to the routine double contrast barium enema. Can Assoc Radiol J 59:174–182

    PubMed  Google Scholar 

  32. Lipson SA (2006) MDCT and 3D workstations. A practical guide and teaching file. Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Mahesh M, Cody DD (2007) Physics of cardiac imaging with multiple-row detector CT. Radiographics 27:1495–1509

    Article  PubMed  Google Scholar 

  34. Xu L, Zhang Z (2010) Coronary CT angiography with low radiation dose. Int J Cardiovasc Imaging 26:17–25

    Article  PubMed  CAS  Google Scholar 

  35. Ketelsen D, Fenchel M, Buchgeister M et al (2012) Estimation of radiation exposure of different dose saving techniques in 128-slice computed tomography coronary angiography. Eur J Radiol 81:e153–e157

    Article  PubMed  Google Scholar 

  36. Qin J, Liu LY, Meng XC et al (2011) Prospective versus retrospective ECG gating for 320-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Clin Imaging 35:193–197

    Article  PubMed  Google Scholar 

  37. Raff GL (2010) Radiation dose from coronary CT angiography: five years of progress. J Cardiovasc Comput Tomogr 4:365–374

    Article  PubMed  Google Scholar 

  38. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  39. Miles KA (2006) Perfusion imaging with computed tomography: brain and beyond. Eur Radiol 16:M37–M43

    Article  PubMed  Google Scholar 

  40. Lee TY (2002) Functional CT: physiological models. Trends Biotechnol 20:S3–S10

    Article  Google Scholar 

  41. Lee TY, Purdie TG, Stewart E (2003) CT imaging of angiogenesis. Q J Nucl Med 47:171–187

    PubMed  Google Scholar 

  42. Faggioni L, Neri E, Bartolozzi C (2010) CT perfusion of head and neck tumors: how we do it. Am J Roentgenol 194:62–69

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Faggioni, L., Paolicchi, F., Neri, E. (2012). La dose in tomografia computerizzata. In: Caramella, D., Paolicchi, F., Faggioni, L. (eds) La dose al paziente in diagnostica per immagini. Imaging & Formazione. Springer, Milano. https://doi.org/10.1007/978-88-470-2649-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2649-0_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2648-3

  • Online ISBN: 978-88-470-2649-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics