Skip to main content

Sustainability of Biohydrogen Production Using Engineered Algae as a Source

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

The increased scarcity of fossil fuels and concerns over climate change have focused attention on alternative energy and the production of renewable fuels. Hydrogen is a promising substitute as an energy carrier to the fossil fuels, since it has high conversion efficiency and high energy content and is environmentally friendly. Nowadays, hydrogen is mostly produced via chemical reformation of fossil fuels; therefore, the biological production of hydrogen is seen as very attractive. Biological hydrogen production represents a renewable means of generating this biofuel and can be performed by a wide range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Different strains of photoautotrophic green algae have the remarkable ability to reduce protons to H2 using light energy. Photobiological hydrogen production by green algae is particularly attractive due to the fact that water and solar energy as main inputs for the process are plentiful on our planet. In this chapter we are focusing on the recent developments in photobiological H2 production by green algae with highlights on the barriers that prevent H2 production and how those limitations can be addressed, through genetic and metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013a) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ Technol 34(13–14):1783–1805

    Article  CAS  Google Scholar 

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013b) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34(13–14):1807–1836

    Article  CAS  Google Scholar 

  • Antal T, Krendeleva T, Laurinavichene T, Makarova V, Ghirardi ML, Rubin A, Tsygankov A, Seibert M (2003) The dependence of algal H2 production on photosystem II and O 2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  CAS  Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB (2009) Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy 34:9087–9094

    Article  CAS  Google Scholar 

  • Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918

    Article  CAS  Google Scholar 

  • Ball SG, Dirick L, Decq A, Martiat JC, Matagne R (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66:1–9

    Article  CAS  Google Scholar 

  • Batyrova K, Tsygankov A, Kosourov S (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839

    Article  CAS  Google Scholar 

  • Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716

    Article  CAS  Google Scholar 

  • Beckmann J et al (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Berberoglu H, Pilon L, Melis A (2008) Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CWþ. Int J Hydrog Energy 33:6467–6483

    Article  CAS  Google Scholar 

  • Bock A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  CAS  Google Scholar 

  • Boichenko V, Arkhipov V, Litvin F (1983) Simultaneous measurements of fluorescence induction and hydrogen evolution of Chlorella under anaerobic conditions. Biophysics (Russ) 28:976–979

    CAS  Google Scholar 

  • Boichenko V, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: Archer MD, Barber J (eds) Photoconversion of solar energy, molecular to global photosynthesis, 2nd edn. Imperial College Press, London, pp 397–452

    Chapter  Google Scholar 

  • Boicheo VA, Hoffmann P (1994) Photosynthetic hydrogen production in prokaryotes and eukaryotes: occurrence, mechanism, and functions. Photosynthetica 30:527–552

    Google Scholar 

  • Boyd ES, Spear JR, Peters JW (2009) [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Appl Environ Microbiol 75:4620–4623

    Article  CAS  Google Scholar 

  • Boyer M, Stapleton J, Kuchenreuther J et al (2007) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99:59–67

    Article  CAS  Google Scholar 

  • Brand JJ, Wright JN, Lien S (1989) Hydrogen production by eukaryotic algae. Biotechnol Bioeng 33:1482–1488

    Article  CAS  Google Scholar 

  • Brooks A (1985) Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221e37

    Google Scholar 

  • Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503

    Article  CAS  Google Scholar 

  • Chang C, King P, Ghirardi M, Kim K (2007) Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Biophys J 93(9):3034–3045

    Article  CAS  Google Scholar 

  • Chen ZX, Chastain CJ, Al-Abed SR, Chollet R, Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. Proc Natl Acad Sci U S A 85:4696–4699

    Article  CAS  Google Scholar 

  • Chen H-C, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296

    Article  CAS  Google Scholar 

  • Chien L, Kuo T, Liu B, Lin H, Feng T, Huang C (2012) Solar-tobioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy 37(23):17738–17748

    Article  CAS  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: PSII Solar-dependent and independent pathways differ in their requirement on starch metabolism. Plant Physiol 151:613–640

    Article  CAS  Google Scholar 

  • Chochois V, Constans L, Dauville ED, Beyly A, Soliveres M, Ball S, Peltier G, Cournac L (2010) Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 35:10731–10740

    Article  CAS  Google Scholar 

  • Cinco R, Macinnis J, Greenbaum E (1993) The role of carbon-dioxide in light-activated hydrogen-production by Chlamydomonas reinhardtii. Photosynth Res 38:27–33

    Article  CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  CAS  Google Scholar 

  • Davies J, Yildiz F, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2215

    CAS  Google Scholar 

  • Davies JP, Yildiz FH, Grossman AR (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11:1179–1190

    Article  CAS  Google Scholar 

  • Davies KM, Skamnaki V, Johnson LN, Venien-Bryan C (2006) Structural and functional studies of the response regulator HupR. J Mol Biol 359:276–288

    Article  CAS  Google Scholar 

  • Depege N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  Google Scholar 

  • Dietz KJ, Heilos L (1990) Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition. Plant Physiol 93:1219e25

    Google Scholar 

  • Doebbe A, Rupprecht J, Beckmann J, Mussgnug J, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C-reinhardtii impacts on biological H2 production. J Biotechnol 131(1):27–33

    Article  CAS  Google Scholar 

  • Dubini A, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 2:1–13

    Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11(11):543–549

    Article  CAS  Google Scholar 

  • Esquível MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29:595–600

    Article  CAS  Google Scholar 

  • Fedorov A, Kosourov S, Ghirardi M, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Appl Biochem Biotechnol 121:403–412

    Article  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    Article  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac LB (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Genkov T, Du Y-C, Spreitzer RJ (2006) Small-subunit cysteine-65 substitutions can suppress or induce alterations in the large-subunit catalytic efficiency and holoenzyme thermal stability of ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 451:167–174

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii. 1. analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    Article  CAS  Google Scholar 

  • Ghirardi ML, Mohanty P (2010) Oxygenic hydrogen photoproduction – current status of the technology. Curr Sci 98:499–507

    CAS  Google Scholar 

  • Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal H(2)-production. Appl Biochem Biotechnol 63–65:141–151

    Article  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 33:70–72

    Article  CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Physiol 58:71–91

    CAS  Google Scholar 

  • Godman JE, Molnár A, Baulcombe DC, Balk J (2010) RNA silencing of hydrogenase (−like) genes and investigation of their physiological roles in the green alga chlamydomonas reinhardtii. Biochem J 431:345–351

    Article  CAS  Google Scholar 

  • Gonzalez-Ballester D, Pollock SV, Pootakham W, Grossman AR (2008) The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol 147:216–227

    Article  CAS  Google Scholar 

  • Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084

    Article  CAS  Google Scholar 

  • Govindjee (2008) In: Govindjee (ed) Advances in photosynthesis and respiration, vol 126. Springer, Dordrecht

    Google Scholar 

  • Graves DA, Spradlin GM, Greenbaum E (1990) Effect of oxygen on photoautotrophic and heterotrophic growth of Chlamydomonas reinhardtii in an anoxic atmosphere. Photochem Photobiol 52(3):585–590

    Article  CAS  Google Scholar 

  • Greenbaum E (1980) Simultaneous photoproduction of hydrogen and oxygen by photosynthesis. Biotechnol Bioeng Symp 10:1–13

    CAS  Google Scholar 

  • Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655

    Article  CAS  Google Scholar 

  • Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-Harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26:1598–1611

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York, pp 15–28

    Chapter  Google Scholar 

  • Hallenbeck P, Abo-Hashesh M, Ghoshet D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  CAS  Google Scholar 

  • Harris EH, Witman GB (2008) The Chlamydomonas sourcebook, 2nd edn. Elsevier, Boston

    Google Scholar 

  • Hase E, Morimura Y, Mihara S, Tamiya H (1958) The role of sulfur in the cell division of Chlorella. Arch Mikrobiol 31:87–95

    Article  CAS  Google Scholar 

  • He M, Li L, Zhang L, Liu J (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. Int J Hydrog Energy 37:16903–16915

    Article  CAS  Google Scholar 

  • Healey FP (1970) The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45:153–159

    Article  CAS  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008a) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407. doi:10.1007/s00425-007-0626-8

    Article  CAS  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008b) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  CAS  Google Scholar 

  • Hwang J-H, Kim H-C, Choi J-A, Abou-Shanab R, Dempsey BA, Regan JM, Kim JR, Song H, Nam I-H, Kim S-N (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5:60–67

    Google Scholar 

  • Jacob J, Lawlor DW (1993) In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate deficient sunflower and maize leaves. Plant Cell Environ 16:785e95

    Article  Google Scholar 

  • Kosourov S, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740

    Article  CAS  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  CAS  Google Scholar 

  • Kosourov S, Ghirardi M, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36(3):2044–2048

    Article  CAS  Google Scholar 

  • Kosourov S, Batyrova K, Petushkova K, Tsygankov A, Ghirardi ML, Seibert M (2012) Maximizing the hydrogen photoproduction yields in chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy 37:8850–8858

    Article  CAS  Google Scholar 

  • Kreuzberg K, Klöck G, Grobheiser D (1987) Subcellular distribution of pyruvate-degrading enzymes in Chlamydomonas reinhardtii studied by an improved protoplast fractionation procedure. Physiol Plant 69:481–488

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H 2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  Google Scholar 

  • Laurinavichene TL, Tolstygina I, Galiulina RR, Ghirardi M, Seibert M, Tsygankov AA (2002) Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int J Hydrog Energy 27:1245–1249

    Article  CAS  Google Scholar 

  • Laurinavichene T, Fedorov A, Ghirardi M, Seibert M, Tsygankov A (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrobiol Energy 31:659–667

    Article  CAS  Google Scholar 

  • Lee JW (2013) Designer transgenic algae for photobiological production of hydrogen from water. In: Lee JW (ed) Advanced biofuels and bioproducts, I, Chapter 20. Springer, New York, pp 371–404

    Chapter  Google Scholar 

  • Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141

    Article  CAS  Google Scholar 

  • Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46

    Article  CAS  Google Scholar 

  • Liebgott P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps J, Guigliarelli B, Bertrand P, Rousset M, Leger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6(1):63–70

    Article  CAS  Google Scholar 

  • Lin H-D, Liu B-H, Kuo T-T, Tsai H-C, Feng T-Y, Huang C-C, Chien L-F (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H 2 in the green alga Chlorella sp. DT. Bioresour Technol 143:154–162

    Article  CAS  Google Scholar 

  • Long H, King P, Ghirardi M, Kim K (2009) Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. J Phys Chem A 113(16):4060–4067

    Article  CAS  Google Scholar 

  • Malnoe A, Wang F, Girard-Bascou J, Wollman F-A, de Vitry C (2014) Thylakoid FTSH protease contributes to photosystem ii and cytochrome b(6)f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26:373–390

    Article  CAS  Google Scholar 

  • Marin-Navarro J, Esquivel M, Moreno J (2010) Hydrogen production by Chlamydomonas reinhardtii revisited: rubisco as a biotechnological target. World J Microbiol Biotechnol 26:1785–1793

    Article  CAS  Google Scholar 

  • Markov SA, Eivazova ER, Greenwood J (2006) Photostimulation of H2 production in the green alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system. Int J Hydrog Energy 31:1314–1317

    Article  CAS  Google Scholar 

  • Maroti G, Tong Y, Yooseph S, Baden-Tillson H, Smith HO, Kovacs KL, Frazier M, Venter JC, Xu Q (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microbiol 75:5821–5830

    Article  CAS  Google Scholar 

  • Matthew T, Zhou WX, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  CAS  Google Scholar 

  • Melis A (2002) Green algal hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2004) Trails of green alga hydrogen research: from Hans Gaffron to new frontiers. Photosynth Res 80:401–409

    Article  CAS  Google Scholar 

  • Melis A, Mullineaux CW, Allen JF (1989) Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light: evidence from quantum yield measurement and fluorescence spec- troscopy of cyanobacterial cells. Z Naturforsch Teil C 44:109–118

    CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  Google Scholar 

  • Melis A, Seibert M, Ghirardi ML (2007) Hydrogen fuel production by transgenic microalgae. Adv Exp Med Biol 616:108–121

    Google Scholar 

  • Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30

    Article  CAS  Google Scholar 

  • Meuser JE, D’adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H(2) production. Biochem Biophys Res Commun 417:704–709

    Article  CAS  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084

    Article  CAS  Google Scholar 

  • Mulder D, Boyd E, Sarma R, Lange R, Endrizzi J, Broderick J, Peters J (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465(7295):248–251

    Article  CAS  Google Scholar 

  • Müller M (2003) Energy metabolism. Part 1: anaerobic protozoa. In: Marr JJ, Nilsen TW, Komunieck R (eds) Molecular medical parasitology. Academic, Amsterdam, pp 125–139

    Chapter  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  Google Scholar 

  • Nagy LE, Meuser JE, Plummer S et al (2007) Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol Lett 29:421–430

    Article  CAS  Google Scholar 

  • Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8:e61375

    Article  CAS  Google Scholar 

  • Oncel S, Sukan FV (2011) Effect of light intensity and the light: dark cycles on the long term hydrogen production by batch cultures. Biomass Bioenergy 35:1066–1074

    Article  CAS  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745

    Article  CAS  Google Scholar 

  • Pinto T, Malcata F, Arrabaça J, Silva J, Spreitzer R, Esquível M (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643

    Article  CAS  Google Scholar 

  • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264

    Article  CAS  Google Scholar 

  • Randt C, Senger H (1985) Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem Photobiol 42:553–557

    Article  CAS  Google Scholar 

  • Ravenel J, Peltier G, Havaux M (1994) The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta 193:251–259

    Article  CAS  Google Scholar 

  • Ruhle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107

    Article  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B et al (2007) The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol 5:e77

    Article  CAS  Google Scholar 

  • Satagopan S, Spreitzer RJ (2004) Substitutions at the Asp-473 latch residue of Chlamydomonas ribulose bisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO2/O2 specificity. J Biol Chem 279:14240–14244

    Article  CAS  Google Scholar 

  • Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Physiol 58:71–91

    Google Scholar 

  • Seibert M, Flynn T, Benson D, Ghirardi M (1998) Development of selection and screening procedures for rapid identification of H2-producing algal mutants with increased O2 tolerance. In: Zaborsky OR (ed) Biohydrogen. Plenum, New York, pp 227–234

    Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    Article  CAS  Google Scholar 

  • Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604

    Article  CAS  Google Scholar 

  • Stapleton J, Swartz J (2010) Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One 5(12):e15275

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106:17331–17336

    Article  CAS  Google Scholar 

  • Stuart TS, Gaffron H (1972) The mechanism of hydrogen photoproduction by several algae. Planta 106:101–112

    Article  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104:17548–17553

    Article  CAS  Google Scholar 

  • Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:35996

    Article  CAS  Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34:4529–4536

    Article  CAS  Google Scholar 

  • Tsygankov AA (2012) Hydrogen production: light-driven processes – green algae. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York

    Google Scholar 

  • Tsygankov A, Kosourov S, Seibert M, Ghirardi M (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 27:1239–1244

    Article  CAS  Google Scholar 

  • Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J (1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89:996–1000

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  Google Scholar 

  • Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Solar Energy 24:3–45

    Article  CAS  Google Scholar 

  • Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627

    Article  CAS  Google Scholar 

  • Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102:2610–2616

    Article  CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Article  CAS  Google Scholar 

  • Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci U S A 96:15336–15341

    Article  CAS  Google Scholar 

  • Xu F-Q, Ma W-M, Zhu X-G (2011) Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production. Int J Hydrog Energy 36:10648–10654

    Article  CAS  Google Scholar 

  • Yanyushin M (1982) Hydrogenase activation and hydrogen photoevolution in a synchronous culture of Chlamydomonas reinhardtii during anaerobic adaptation under light. Sov Plant Physiol 29:863–869

    Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2 producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Hallenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Batyrova, K., Hallenbeck, P.C. (2017). Sustainability of Biohydrogen Production Using Engineered Algae as a Source. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_8

Download citation

Publish with us

Policies and ethics