Skip to main content

Biohydrogen Production from Agricultural Biomass and Organic Wastes

  • Chapter
  • First Online:
Book cover Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

With increasing demand for energy, depleting primary energy sources (i.e., coal and oil), and deteriorating environment, the efficient use and conservation of existing resources along with the production of energy from alternative nonconventional sources such as biomass have become essential. Hydrogen is a clean energy form with no emissions that can be used for generation of electricity or as fuel for transportation purposes. The production of hydrogen from lignocellulosic biomass or biohydrogen is a very promising energy form, and its role as an energy carrier in the future energy market is considered of major importance. Biohydrogen production from organic sources such as energy crops, agricultural residues, or organic waste seems very promising as it fulfills the basic sustainability criteria compared to conventional energy type. The technology for biomass conversion to biohydrogen has advanced in recent years and ensures relatively high volumes of production. Nevertheless, the production of biohydrogen shows a wide variation which can be largely explained by differences in substrate characteristics and operational conditions. Hence, attention needs to focus on sustainability issues concerning the production of the biomass, the standardization of the operational parameters, and the logistics of biohydrogen cycle production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedi J, Yeboah YD, Realff M, McGee D, Howard J, Bota KB (2001) An integrated approach to hydrogen production from agricultural residues for use in urban transportation. In: Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535, Baltimore, MD, April 17–19, 2001, pp 160–186

    Google Scholar 

  • Al Seadi T, Rutz D, Prassl H, Kottner M, Finsterwalder T, Volk S, Janssen R (2008) The biogas handbook. University of Southern Denmark, Esbjerg

    Google Scholar 

  • Anonymous (1995) The green hydrogen report: the 1995 Progress Report of the Secretary of Energy’s Hydrogen Technical Advisory Panel, May 1995, DOE/GO-10095-179 DE95009213

    Google Scholar 

  • Anonymous (2003) Municipal Solid Waste in the United States: 2001 facts and figures. Office of Solid Waste and Emergency Response (5305W) EPA530-R-03-011. www.epa.gov, October 2003. Accessed Jan 2015

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Lyberatos G (2011) Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int J Hydrog Energy 36:4843–4851

    Article  CAS  Google Scholar 

  • Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A Gen 176:159–176

    Article  CAS  Google Scholar 

  • Atif AAY, Fakhrul-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrog Energy 30:1393–1397

    Article  CAS  Google Scholar 

  • Balat M (2008a) Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources Part A 30:552–564

    Article  CAS  Google Scholar 

  • Balat M (2008b) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydr Energy 33:4013–4029

    Article  CAS  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass. Present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    Article  CAS  Google Scholar 

  • Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  CAS  Google Scholar 

  • Barrows B (2001) Briefing paper: what are “Conversion Technologies”? State of Oregon, Dept. of Environmental Quality, November 2011

    Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486

    Article  CAS  Google Scholar 

  • Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrog Energy 29:173–185

    Google Scholar 

  • Cherry RS (2004) A hydrogen utopia. Int J Hydrog Energy 29:125–129

    Article  CAS  Google Scholar 

  • Childress J (2007) The Gasification industry: status and forecast, COAL-GEN Mega Session August 3, 2007 Milwaukee, WI

    Google Scholar 

  • Chong ML, Sabaratnamb V, Shiraic Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287

    Article  CAS  Google Scholar 

  • Chuang YS, Liang YC, Huang CY, Chang FY, Lay CH, Lin CY (undated) Biohydrogen production from agricultural wastes using anaerobic mixed microflora

    Google Scholar 

  • Collet C, Adler N, Schwitzguebel JP, Peringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrog Energy 29:1479–1485

    Article  CAS  Google Scholar 

  • Cui M, Yuan Z, Zhi X, Wei L, Shen J (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int J Hydrog Energy 35:4041–4047

    Article  CAS  Google Scholar 

  • Das D, Khanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14:57–67

    Article  CAS  Google Scholar 

  • Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939

    Article  CAS  Google Scholar 

  • de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390

    Article  Google Scholar 

  • de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12. doi:10.1186/1754-6834-2-12

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energy Sources A 30:27–37

    Article  CAS  Google Scholar 

  • DOE (2004) United States Department of Energy. An integrated research, development and demonstration plan. Hydrogen Pasteur Plan 2004

    Google Scholar 

  • Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrog Energy 34:812–820

    Article  CAS  Google Scholar 

  • EIA-Energy Information Administration (2001) International energy outlook 2001. DOE/EIA, Washington, DC

    Google Scholar 

  • Hogg R (2007) Energy from waste by pyrolysis and gasification the experience and performance of an operational plant. In: Proceedings of the international conference on sustainable solid waste management. Chennai, India, 5–7 September, 385–392

    Google Scholar 

  • Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1999) Substrate consumption rate for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol 70:103–113

    Article  CAS  Google Scholar 

  • Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505

    Article  CAS  Google Scholar 

  • Fan YT, Xing Y, Ma HC, Pan CM, Hou HW (2008) Enhanced cellulose hydrogen production from corn stalk by lesser panda manure. Int J Hydrog Energy 33:6058–6065

    Article  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrog Energy 30:785–793

    Article  CAS  Google Scholar 

  • Fang HHP, Li CL, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31:683–692

    Article  CAS  Google Scholar 

  • Feng GL, Letey J, Chang AC, Campbell M (2005) Simulating dairy liquid waste management options as a nitrogen source for crops. Agri Ecosys Environ 110:219–229

    Article  Google Scholar 

  • Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A (2005a) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120:402–409

    Article  CAS  Google Scholar 

  • Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005b) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21:855–862

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin JJ (1942) Fermentative and photochemical production of hydrogen in algae. Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gavala HN, Skiadas LV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52(1–2):209–215

    CAS  Google Scholar 

  • Gemici Z, Ulusarslan T, Teke I (2009) Currency of district cooling systems and alternative energy sources. Energy Educ Sci Technol A 23:31–53

    Google Scholar 

  • Hafner SD (2007) Biological hydrogen production from nitrogen-deficient substrates. Biotechnol Bioeng 97:435–437

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hasson A (2009) Biohydrogen production from industrial organic wastes. J Appl Sci Environ Sanitation 4(1):7–10

    Google Scholar 

  • Hawaii Renewable Resources Program (2000) University of Hawaii’s Department of Chemistry

    Google Scholar 

  • He D, Bultel Y, Magnin JP, Roux C, Willison JC (2005) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to PEM fuel cell. J Power Sources 141:19–23

    Article  CAS  Google Scholar 

  • Herzog A, Tatsutani M (2005) A hydrogen future? An economic and environmental assessment of hydrogen production pathways. Natural Resources Defense Council, Issue Paper, November 2005

    Google Scholar 

  • Higman CAA, Tam S (2014) Advances in coal gasification, hydrogenation and gas treating for the production of chemicals and fuels. Chem Rev 114:1673–1708

    Article  CAS  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T (2004) Manure based biogas systems. In: Lens P, Hamelers B, Hoitink H, Bidlingmaier W (eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, pp 377–394

    Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrog Energy 30:471–483

    Article  CAS  Google Scholar 

  • Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77

    Article  CAS  Google Scholar 

  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    Article  CAS  Google Scholar 

  • Jae-Hwa L, Dong-Geun L, Jae-Il P, Ji-Youn K (2010) Biohydrogen production from a marine brown algae and its bacterial diversity. Korean J Chem Eng 27:187–192

    Article  Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 103–104

    Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kazim A, Veziroglou TN (2001) Utilization of solar-hydrogen energy in the UAE to maintain its shape in the world energy market for the 21st century. Renew Energy 24:259–274

    Article  CAS  Google Scholar 

  • Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29:1607–1616

    Article  CAS  Google Scholar 

  • Kim MS, Baek JS, Lee JK (2006) Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrog Energy 31:121–127

    Article  CAS  Google Scholar 

  • Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2003) Kinetics of biohydrogen production by the photosynthetic bacterium Rhodobacter spheroids O.U. 001. Int J Hydrog Energy 28:381–388

    Article  CAS  Google Scholar 

  • Kondo T, Arakawa M, Hiral T, Wakayama T, Hara M, Miyake J (2002) Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng 93:145–150

    Article  CAS  Google Scholar 

  • Kongjan P, Thong S, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908

    CAS  Google Scholar 

  • Korres NE, Nizami AS (2013) Variation in anaerobic digestion. Need for process monitoring. In: Korres NE, O’Kiely P, Benzie JAH, West JS (2013) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Pub Earthscan from Routledge/Taylor and Francis Pub. Group, pp 194–230

    Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Biorefin 4:310–325

    Article  CAS  Google Scholar 

  • Korres NE, O’Kiely P, Benzie JAH, West JS (2013) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Pub Earthscan from Routledge/Taylor and Francis Pub. Group

    Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT‐BT S1 isolated from anaerobic sewage sludge. Bioresource Technol 98:1183–1190

    Article  CAS  Google Scholar 

  • Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyperthermophilic temperature. Biomass Bioenergy 33:1168–1174

    Article  CAS  Google Scholar 

  • Koutrouli EC, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K, Lyberatos G (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100:3718–3723

    Article  CAS  Google Scholar 

  • Krupp M, Widmann R (2009) Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrog Energy 34:4509–4516

    Article  CAS  Google Scholar 

  • Kyazze G, Dinsdale R, Hawkes FR, Guwy AJ, Premier GC, Donnison IS (2008) Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 99:8833–8839

    Article  CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    Article  CAS  Google Scholar 

  • Lay JJ, Fan KS, Chang IJ, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28:1361–1367

    Article  CAS  Google Scholar 

  • Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27:1309–1313

    Article  CAS  Google Scholar 

  • Lee H, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liu F, Fang B (2007) Optimization of biohydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotech J 2:374–380

    Article  CAS  Google Scholar 

  • Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  Google Scholar 

  • Maeda I, Miyasaka H, Umeda F, Kawase M, Yagi K (2003) Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3 hydroxybutyrate) as sole substrate. Biotechnol Bioeng 81:474–481

    Article  CAS  Google Scholar 

  • Mann MK (1995) Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis. In: Proceedings of the 1995 Hydrogen Program Review, Vol. 1, NREL/CP-430-20036-Vol. 1, pp 205–236

    Google Scholar 

  • Matsunaga T, Hatano T, Yamada A, Matsumato M (2000) Microaerobic hydrogen production by photosynthetic bacteria in a double phase photobioreactor. Biotechnol Bioeng 68:647–651

    Article  CAS  Google Scholar 

  • May-Tobin C (2011) Wood for fuel. In: Boucher D, Elias P, Lininger K, May-Tobin C, Roquemore S, Saxon E (eds) (2011). The root of the problem. What’s driving tropical deforestation today? Union of Concerned Scientists, pp 79–86

    Google Scholar 

  • Miyake J (1998) The science of biohydrogen. An energetic view. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York, pp 7–18

    Google Scholar 

  • Miyake J, Asada Y, Kawamura S (1989) Nitrogenase. In: Hall CW, Kitani O (eds) Biomass Handbook Gorton and Breach. Science Publishers, New York, pp 362–370

    Google Scholar 

  • Miyake J, Wakayama T, Schnackenberg JS, Arai T, Asada Y (1999) Simulation of daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88:659–663

    Article  CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. FAO Agricultural Services Bulletin – 128. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Mohan SV, Bhaskar YV, Sarma PN (2007) Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res 41:2652–2664

    Article  CAS  Google Scholar 

  • Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84

    Article  Google Scholar 

  • Najafpour G, Younesi H, Mohammed AR (2004) Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum in batch culture. Biochem Eng J 21:123–130

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  Google Scholar 

  • Nath K, Kumar A, Das D (2006) Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can J Microbiol 52:525–532

    Article  CAS  Google Scholar 

  • Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Biores Technol 99:5749–5755

    Article  CAS  Google Scholar 

  • Ni M, Leung MKH, Sumathy K, Leung DYC (2006) Potential of renewable hydrogen production for energy supply in Hong Kong. Int J Hydrog Energy 31:1401–1412

    Article  CAS  Google Scholar 

  • NRC-National Research Council (U.S) (2004) The hydrogen economy: opportunities, costs, barriers, and R&D needs. National Academies Press, Washington, DC

    Google Scholar 

  • Ntaikou I, Koutros E, Kornaros M (2009) Valorization of wastepaper using the fibrolytic/hydrogen bacterium Ruminococcus albus. Bioresour Technnol 100(15):5928–5933

    Article  CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39

    Article  CAS  Google Scholar 

  • Oh YK, Scol EH, Kim MS, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrog Energy 29:1115–1121

    CAS  Google Scholar 

  • Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41(3):25–32

    CAS  Google Scholar 

  • Pakarinen O (2011) Methane and hydrogen production from crop biomass through anaerobic digestion. Jyvaskyla studies in biological and environmental science. University of Jyvaskyla, Jyvaskyla

    Google Scholar 

  • Panagiotopoulos IA, Bakker RR, Budde MAW, de Vrije T, Claassen PAM, Koukios EG (2009) Fermentative hydrogen production from pretreated biomass: a comparative study. Bioresour Technol 100:6331–6338

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and Bioproducts industry: the technical feasibility of a billion-ton annual supply. Joint Study Sponsored by U.S. Department of Energy and U.S. Department of Agriculture, May 2005. DOE/GO-102005-2135 ORNL/TM-2005/66

    Google Scholar 

  • Petersen JE (2008) Energy production with agricultural biomass: environmental implications and analytical challenges. Eur Rev Agric Econ 35(3):385–408

    Article  Google Scholar 

  • Petitdemange G, Durr C, Abbad Andaloussi S, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15:498–502

    Article  CAS  Google Scholar 

  • Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Anal Appl Biol 146:193–201

    Article  CAS  Google Scholar 

  • Rai Pankaj K, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549

    Article  CAS  Google Scholar 

  • Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotech Bioeng 98:340–348

    Article  CAS  Google Scholar 

  • Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, Co2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima – involvement of the embden‐meyerhof pathway. Arch Microbiol 161:460–470

    CAS  Google Scholar 

  • Shakya BD, Aye L, Musgrave P (2005) Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for cooma. Int J Hydrog Energy 30:9–20

    Article  CAS  Google Scholar 

  • Shi XY, Yu HQ (2004) Hydrogen production from propionate by Rhodopseudomonas capsulate. Appl Biochem Biotechnol 117:143–154

    Article  CAS  Google Scholar 

  • Shi XY, Yu HQ (2005) Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulate. Process Biochem 40:2475–2481

    Article  CAS  Google Scholar 

  • Shin JH, Yoon JH, Ahn EK, Kim MS, Sim SJ, Park TH (2007) Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU‐1. Int J Hydrog Energy 32:192–199

    Article  CAS  Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Chang Biol 12:20542076

    Article  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami ASA, Prasad S, Murphy J (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass. Challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  Google Scholar 

  • Tenca QA (2011) Biohydrogen production from agricultural and livestock residues within an integrated bioenergy concept. Ph.D. Thesis Università degli Studi di Milano, Facoltà di Agraria, Department of Agricultural Engineering. Via Celoria 2, 20133, Milano (MI), Italy

    Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588

    Article  CAS  Google Scholar 

  • Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzy Microb Technol 41:583–590

    Article  CAS  Google Scholar 

  • UCS (Union of Concerned Scientists) (2012a) Turning agricultural residues and manure into bioenergy. Fact sheets. Union of concerned Scientists. https://s3.amazonaws.com/ucs-documents/clean-vehicles/Agricultural-Residue-Ranking.pdf. Accessed Jan 2015

  • UCS (Union of Concerned Scientists) (2012b) The promise of biomass: clean power and fuel—if handled right. (Union of Concerned Scientists). Cambridge, MA. http://www.ucsusa.org/assets/documents/clean_vehicles/BiomassResource-Assessment.pdf. Accessed Jan 2015

  • Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194–197

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F, Poggi-Varaldo HM (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrog Energy 30:1383–1391

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30:1535–1542

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Lalit Babu V, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzym Microb Technol 41:506–515

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Babu LM, Reddy V, Mohanakrishna G, Sarma PN (2009a) Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrog Energy 34:6149–6156

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Kannaiah Goud R, Sarma PN (2009b) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresour Technol 100:3061–3068

    Article  CAS  Google Scholar 

  • Veziroglu TN, Sahin S (2008) 21st century’s energy: hydrogen energy system. Energy Convers Manag 49:1820–1831

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ahmad D (2006) Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int J Hydrog Energy 31:1284–1291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ahmad D, Bin Ibrahim MK (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrog Energy 31:569–579

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ahmad D, Soning C (2007) Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter. Int J Hydrog Energy 32:4754–4760

    Article  CAS  Google Scholar 

  • Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488

    Article  CAS  Google Scholar 

  • Wang D, Czernik S, Chornet E (1998) Production of hydrogen from biomass by Catalytic Steam Reforming of Fast Pyrolysis Oil. Energy Fuel 12:19–24

    Article  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce biohydrogen by anaerobic fermentation. Water Res 37:2789–2793

    Article  CAS  Google Scholar 

  • Wang CH, Lin PJ, Chang JS (2006) Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochem 41:1353–1358

    Article  CAS  Google Scholar 

  • Winter CJ (2005) Into the hydrogen energy economy-milestones. Int J Hydrog Energy 30:681–685

    Article  CAS  Google Scholar 

  • Wu X, Zhu J, Dong C, Miller C, Li Y, Wang L, Yao W (2009) Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int J Hydrog Energy 34:6636–6645

    Article  CAS  Google Scholar 

  • Yang P, Ruihong Z, Mcgarvey JA, Benemann J (2005) Hydrogen production from waste by anaerobic fermentation. American Society of Agricultural Engineers, July 17–20, 2005, Tampa, Fl. Paper No. 056019 Continuous hydrogen production from organic waste

    Google Scholar 

  • Yang PL, Zhang RH, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 32:4761–4771

    Article  CAS  Google Scholar 

  • Yang Y, Tsukahara K, Sawayama S (2008) Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Proc Biochem 43:362–367

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability from the biofuels industry. Curr Opin Biotech 18:213–219

    Article  CAS  Google Scholar 

  • Yetis M, Gunduz U, Eroglu I, Yucel M, Turker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 25:1035–1041

    Article  CAS  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 20:895–899

    Article  CAS  Google Scholar 

  • Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch manufacturing wastes. Biomass Bioenergy 22:89–95

    Article  Google Scholar 

  • Yongzhen T, Yang C, Yongqiang W, Yanling H, Zhihua Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206

    Article  CAS  Google Scholar 

  • Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27(11–12):1359–1365

    Article  CAS  Google Scholar 

  • Zhang T, Liu H, Fang HHP (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Mang 69:149–156

    Article  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254

    Article  CAS  Google Scholar 

  • Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized agar gels. Int J Hydrog Energy 24:305–310

    Article  CAS  Google Scholar 

  • Zhu H, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrog Energy 27:1349–1357

    Article  CAS  Google Scholar 

  • Zhu H, Stadnyk A, Béland M, Seto P (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 99:5078–5084

    Article  CAS  Google Scholar 

  • Zhu J, Li Y, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100:5472–5477

    Article  CAS  Google Scholar 

  • Zuideveld PL (2001) Overview of shell gasification projects. EPRI gasification Technology. Gasification Technology Conference, San Francisco, October 7–10 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Korres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Korres, N.E., Norsworthy, J.K. (2017). Biohydrogen Production from Agricultural Biomass and Organic Wastes. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_3

Download citation

Publish with us

Policies and ethics