Skip to main content

Ceramics for Sustainable Energy Technologies with a Focus on Polymer-Derived Ceramics

  • Conference paper
  • First Online:
Novel Combustion Concepts for Sustainable Energy Development

Abstract

Due to their high hardness, high temperature stability, and high chemical stability, ceramic materials have significant uses and potential in existing and emerging sustainable technologies . In this paper, we provide a thorough overview of ceramics in a variety of sustainable applications. This is followed by a detailed discussion of an emerging process to make ceramics called polymer (or precursor)-derived ceramics . It is shown that due to the versatility of this process in making a wide range of shapes—fibers, coatings , and porous ceramics, this is an attractive route to make ceramics that will be a critical element in the next generation of sustainable technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Kocanis S, Fey T, Wilhelm M, Grathwohl G (2014) Hierarchically ordered foams derived from polysiloxanes with catalytically active coatings. J Eur Ceram Soc 34:1715–1725

    Article  Google Scholar 

  • Akbar S, Dutta P, Lee C (2006) High-temperature ceramic gas sensors: a review. Int J Appl Ceram Technol 3:302–311

    Article  Google Scholar 

  • Bhattacharjee S, Das PR, Ohl C, Wilker V, Kappa M, Scheffler F, Scheffler M (2011) Novel-type inorganic foams from preceramic polymers with embedded titania nanoparticles for photo-catalytic applications. Adv Eng Mater 11:996–1001

    Article  Google Scholar 

  • Ceron-Nicolat B, Wolff F, Dakkouri-Baldauf A, Fey T, Münstedt H, Greil P (2012) Graded cellular ceramics from continuous foam extrusion. Adv Eng Mater 14:1097–1103

    Article  Google Scholar 

  • Ceron-Nicolat B, Fey T, Greil P (2010) Processing of ceramic foams with hierarchical cell structure. Adv Eng Mater 12:884–892

    Article  Google Scholar 

  • Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417

    Article  Google Scholar 

  • Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) Conductive ceramic foams from preceramic polymers. J Am Ceram Soc 84:2265–2268

    Article  Google Scholar 

  • Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    Google Scholar 

  • Colombo P, Riccardi B, Donato A, Scarinci G (2000) Joining of SiC/SiC ceramic matrix composites for fusion reactor blanket applications. J Nucl Mater 278:127–135

    Article  Google Scholar 

  • D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Article  Google Scholar 

  • Dandeneau CS, Bodick TW, Bordia RK, Ohuchi FS (2013) Thermoelectric properties of reduced polycrystalline Sr0.5Ba0.5Nb2O6 fabricated via solution combustion synthesis. J Am Ceram Soc 96:1–8

    Article  Google Scholar 

  • de Sousa E, Rambo CR, Hotza D, Novaes de Oliveira AP, Fey T, Greil P (2008) Microstructure and properties of LZSA glass-ceramic foams. Mater Sci Eng A 476:89–97

    Article  Google Scholar 

  • Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569

    Article  Google Scholar 

  • Flores O, Bordia RK, Nestler D, Krenkel W, Motz G (2014) Ceramic fibers based on SiC and SiCN systems: current research, development and commercial status. Adv Eng Mater 16:621–636

    Article  Google Scholar 

  • Flores O, Schmalz T, Krenkel W, Heymann L, Motz G (2013) Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres. J Mater Chem A 1:15406–15415

    Article  Google Scholar 

  • Fritz G, Grobe J, Kummer D (1965) Carbosilanes. In: Emeléus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry. Academic Press, New York, pp 349–418

    Google Scholar 

  • Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2000) Processing of ceramic foam by pyrolysis of filler containing phenylmethyl polysiloxane. Ceram Trans 108:121–130

    Google Scholar 

  • Greil P (1995) Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc 78:835–848

    Article  Google Scholar 

  • Günthner M, Albrecht Y, Motz G (2007) Polymeric and ceramic-like coatings on the basis of SIN(C) precursors for protection of metals against corrosion and oxidation. Ceram Eng Sci Proc 27:277–284

    Article  Google Scholar 

  • Günthner M, Kraus T, Dierdorf A, Decker D, Krenkel W, Motz G (2009a) Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J Eur Ceram Soc 29:2061–2068

    Article  Google Scholar 

  • Günthner M, Kraus T, Dierdorf A, Decker D, Krenkel W, Motz G (2009b) Particle filled PHPS silazane based coatings on steel. Int J Appl Ceram Technol 6:373–380

    Article  Google Scholar 

  • Günthner M, Pscherer M, Kaufmann C, Motz G (2014) High emissivity coatings based on polysilazanes for flexible Cu(In, Ga)Se2 thin-film solar cells. Solar Energy Mater Solar Cells (SOLMAT) 123:97–103

    Article  Google Scholar 

  • Günthner M, Schütz A, Glatzel U, Wang K, Bordia RK, Greißl O, Krenkel W, Motz G (2011) High performance environmental barrier coatings, part I: passive filler loaded SiCN system for steel. J Eur Ceram Soc 31:3003–3010

    Article  Google Scholar 

  • Günthner M, Wang K, Bordia RK, Motz G (2012) Conversion behaviour and resulting mechanical properties of polysilazane-based coatings. J Eur Ceram Soc 32:1883–1892

    Article  Google Scholar 

  • Hacker J, Motz G, Ziegler G (2001a) Novel ceramic SiCN-fibres from the polycarbosilazane ABSE. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH Verlag, Weinheim, pp 52–55

    Google Scholar 

  • Hacker J, Motz G, Ziegler G (2001b) Processing of SiCN-fibres prepared from polycarbosilazanes. In: Heinrich JG, Aldinger F (eds) Ceramic materials and components for engines. Wiley-VCH Verlag, Weinheim, pp 653–656

    Chapter  Google Scholar 

  • Haught D, Daley J, Bakke P, Marchionini B (2007) Overview of the U.S. Department of Energy (DOE) high-temperature superconductivity program for large-scale applications. Int J Appl Ceram Technol 4:197–202

    Article  Google Scholar 

  • Hiemer U, Klemm E, Scheffler F, Selvam T, Schwieger W, Emig G (2004) Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide. Chem Eng J 101:17–22

    Article  Google Scholar 

  • IPCC (2014) Report Mitigation 2014: Summary for Policymakers. Retrieved 20 Aug 2014 from http://report.mitigation2014.org/spm/ipcc_wg3_ar5_summary-for-policymakers_approved.pdf

  • Kappa M, Kebianyor A, Scheffler M (2010) A two-component preceramic polymer system for structured coatings on metals. Thin Solid Films 519:301–305

    Article  Google Scholar 

  • Katoh Y, Kohyama A, Hinoki T, Snead LL (2003) Progress in SiC-based ceramic composites for fusion applications. Fusion Sci Technol 44:155–162

    Google Scholar 

  • Kokott S, Motz G (2007) Cross-linking via electron beam treatment of a tailored polysilazane (ABSE) for processing of ceramic SiCN-fibres. Soft Mater 4:165–174

    Article  Google Scholar 

  • Kokott S, Heymann L, Motz G (2008) Rheology and processability of multi-walled carbon nanotubes—ABSE polycarbosilazane composites. J Eur Ceram Soc 28:1015–1021

    Article  Google Scholar 

  • Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20:1261–1277

    Article  Google Scholar 

  • Konegger T, Liersch A, Gierl C, Scheffler M (2013a) Bulk ceramic composites derived from a preceramic polysilazane with alumina and zirconia fillers. Adv Eng Mater 15:394–406

    Article  Google Scholar 

  • Konegger T, Schneider P, Bauer V, Amsüss A, Liersch A (2013b) Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation. In: IOP conference series: material science and engineering, vol 47, p 012054

    Google Scholar 

  • Kraus T, Günthner M, Krenkel W, Motz G (2009) cBN-particle-filled SiCN-precursor coatings. Adv Appl Ceram 108:476–482

    Article  Google Scholar 

  • Krishnan S, Fey T, Greil P (2014) Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram Trans 243:47–60

    Google Scholar 

  • Lewinsohn CA, Rao S, Bordia RK (2005) Effect of active fillers on ceramic joints derived from preceramic polymers. Ceram Eng Sci Proc 26:407–415

    Article  Google Scholar 

  • Li K (2007) Ceramic membranes for separation and reaction. Wiley, Chichester

    Book  Google Scholar 

  • Madsen LD, White AA (2014) Investments in ceramic science, engineering and education for sustainability by the U.S.A. National Science Foundation. J Electroceram 32:60–65

    Article  Google Scholar 

  • Menzler NH, Tietz F, Uhlenbruck S, Buchkremer HP, Stöver D (2010) Materials and manufacturing technologies for solid oxide fuel cells. J Mater Sci 45:3109–3135

    Article  Google Scholar 

  • Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47:4966–4981

    Article  Google Scholar 

  • Motz G (2006) Synthesis of SiCN-precursors for fibres and matrices. Adv Sci Technol 50:24–30

    Article  Google Scholar 

  • Motz G, Hacker J, Ziegler G (2000) Special modified silazanes for coatings fibers and CMC’s. Adv Ceram Mater Struct B 21:307–314

    Google Scholar 

  • Motz G, Hacker J, Ziegler G (2001) Design of SiCN-precursors for various applications. In: Heinrich JG, Aldinger F (eds) Ceramic materials components for engines. Wiley-VCH Verlag, Weinheim, pp 581–585

    Chapter  Google Scholar 

  • Motz G, Hacker J, Ziegler G, Clauss B, Schawaller D (2002a) Low-cost ceramic SiCN Fibres by an optimized polycarbosilazane and continuous processing. In: Vincenzini P, Badini C (eds) Advanced inorganic structural fiber composites IV. Techna, Faenza, pp 47–54

    Google Scholar 

  • Motz G, Hacker J, Ziegler G, Schawaller D, Clauss B (2002b) New SiCN fibres from the ABSE polycarbosilazane. Ceram Eng Sci Proc 23:255–260

    Article  Google Scholar 

  • Ohl C, Kappa M, Wilker V, Bhattacharjee S, Scheffler F, Scheffler M (2011) Novel open-cellular glass foams with high optical transmittance. J Am Ceram Soc 94:436–441

    Article  Google Scholar 

  • Reschke V, Laskowsky A, Kappa M, Wang K, Bordia RK, Scheffler M (2011) Polymer derived ceramic foams with additional strut porosity. Epitőanyag 63:57–60

    Article  Google Scholar 

  • Rödel J, Kounga ABN, Weissenberger-Eibl M, Koch D, Bierwisch A, Rossner W, Hoffmann MJ, Danzer R, Schneider G (2009) Development of a roadmap for advanced ceramics: 2010–2025. J Eur Ceram Soc 29:1549–1560

    Article  Google Scholar 

  • Scheffler F, Zampieri A, Schwieger W, Zeschky J, Scheffler M, Greil P (2005a) Zeolite-covered polymer-derived ceramic foams: novel hierarchical pore systems for sorption and catalysis. Adv Appl Ceram 104:43–48

    Article  Google Scholar 

  • Scheffler M, Bordia R, Travitzky N, Greil P (2005b) Development of a rapid crosslinking preceramic polymer system. J Eur Ceram Soc 25:175–180

    Article  Google Scholar 

  • Scheffler M, Colombo P (eds) (2005) Cellular ceramics. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Scheffler M, Greil P, Berger A, Pippel E, Woltersdorf J (2004) Nickel-catalyzed in situ formation of carbon nanotubes and turbostratic carbon in polymer-derived ceramics. Mater Chem Phys 84:131–139

    Article  Google Scholar 

  • Scheffler M, Scheffler F (2006) Zeolite coatings on porous monoliths. Adv Sci Technol 45:1260–1267

    Article  Google Scholar 

  • Scheffler M, Scheffler F (2008) Processing of ceramic foams and their surface modification with zeolites. Ceram Forum Int 85:E45–E50

    Google Scholar 

  • Schütz A, Günthner M, Motz G, Greißl O, Glatzel U (2012) Characterisation of novel precursor derived ceramic coatings with glass filler particles on steel substrates. Surf Coat Technol 207:319–327

    Article  Google Scholar 

  • Seifert M, Travitzky N, Krenkel W, Motz G (2014) Multiphase ceramic composites derived by reaction of Nb and SiCN precursors. J Eur Ceram Soc 34:1913–1921

    Article  Google Scholar 

  • Stern E, Heyder M, Scheffler F (2009) Micropatterned ceramic surfaces by coating with filled preceramic polymers. J Am Ceram Soc 92:2438–2440

    Article  Google Scholar 

  • Torrey JD, Bordia RK (2007) Phase and microstructural evolution in polymer-derived composite systems and coatings. J Mater Res 22:1959–1966

    Article  Google Scholar 

  • Torrey JD, Bordia RK (2008a) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28:253–257

    Article  Google Scholar 

  • Torrey JD, Bordia RK (2008b) Processing of polymer-derived ceramic composite coatings on steel. J Am Ceram Soc 91:41–45

    Article  Google Scholar 

  • Torrey JD, Bordia RK, Henager CH, Blum Y, Shin Y, Samuels WD (2006) Composite polymer derived ceramic system for oxidizing environments. J Mater Sci 41:4617–4622

    Article  Google Scholar 

  • Walter S, Suttor D, Erny T, Hahn B, Greil P (1996) Injection molding of polysiloxane/filler mixtures for oxycarbide ceramic composites. J Eur Ceram Soc 16:387–393

    Article  Google Scholar 

  • Wang K, Günthner M, Motz G, Bordia RK (2011) High performance environmental barrier coatings, part II: active filler loaded SiOC system for superalloys. J Eur Ceram Soc 31:3011–3020

    Article  Google Scholar 

  • Wang K, Günthner M, Motz G, Flinn, Bordia RK (2013) Control of surface energy of silicon oxynitride films. Langmuir 29:2889–2896

    Article  Google Scholar 

  • Wang K, Unger J, Torrey JD, Flinn BD, Bordia RK (2014) Corrosion resistant polymer derived ceramic composite environmental barrier coatings. J Eur Ceram Soc 34:3597–3606

    Article  Google Scholar 

  • Wang K, Zheng X, Ohuchi FS, Bordia RK (2012) The conversion of perhydropolysilazane into SiON films characterized by X-Ray photoelectron spectroscopy. J Am Ceram Soc 95:3722–3725

    Article  Google Scholar 

  • Woiton M, Heyder M, Laskowsky A, Stern E, Scheffler M, Brabec CJ (2011) Self-assembled microstructured polymeric and ceramic surfaces. J Eur Ceram Soc 31:1803–1810

    Article  Google Scholar 

  • Wolff F, Ceron Nicolat B, Fey T, Greil P, Münstedt H (2012) Extrusion foaming of a preceramic silicone resin with a variety of profiles and morphologies. Adv Eng Mater 14:1110–1115

    Article  Google Scholar 

  • Yajima S, Hayashi J, Omori M (1975) Continuous silicon carbide fibre of high tensile strength. Chem Lett 4:931–934

    Article  Google Scholar 

  • Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990

    Article  Google Scholar 

  • Zampieri A, Colombo P, Mabande GTP, Selvam T, Schwieger W, Scheffler F (2004) Zeolite coatings on microcellular ceramic foams: a novel route to microreactor and microseparator devices. Adv Mater 16:819–823

    Article  Google Scholar 

  • Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Jason Lo SH, Kummer B, Scheffler M, Greil P (2003) Preceramic polymer derived cellular ceramics. Compos Sci Technol 63:2361–2370

    Article  Google Scholar 

  • Zeschky J, Höfner T, Arnold C, Weißmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937

    Article  Google Scholar 

Download references

Acknowledgments

T.K. gratefully acknowledges funding through an Erwin Schrödinger Fellowship by the Austrian Science Fund (FWF), grant J3422. T.F. and P.G. gratefully acknowledge the Cluster of Excellence “Engineering of Advanced Materials” funded by DFG for financial support. F.S. and M.S. acknowledge the DFG and the AvH for financial support. RKB acknowledges support from the US Department of Energy Office of Nuclear Energy (DoE-NEUP) Grant through Idaho National Laboratory (Grant # 10-918) and US Air Force Office of Scientific Research (Grant FA9550-09-1-0633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Bordia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Konegger, T. et al. (2014). Ceramics for Sustainable Energy Technologies with a Focus on Polymer-Derived Ceramics. In: Agarwal, A., Pandey, A., Gupta, A., Aggarwal, S., Kushari, A. (eds) Novel Combustion Concepts for Sustainable Energy Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2211-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2211-8_22

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2210-1

  • Online ISBN: 978-81-322-2211-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics