Skip to main content

Tritium Measurement I—Tritium in Gas, Liquid, and Solid

  • Chapter
  • First Online:
Tritium: Fuel of Fusion Reactors

Abstract

Since tritium (T) handled in fusion environment distributes so widely in its concentration and chemical form, no single T-measuring method can cover the wide concentration ranging from environment level (a few Bq) to carrier free level (GBq or above) and distinguish various tritiated compounds (gas, water, and organics ). In principle, any methods used for hydrogen measurements can be used for T measurements. However, safety requirements owing to the radioactivity of T give limitation in the measurements. Furthermore, electric noises caused by β-electrons emitted at T decay often disturb the measurements. On the other hand, they are allowed to use the radioactivity measurement. Nevertheless, their energy is so low to make their detection difficult. In this chapter, the principle of T detection and measurements is introduced, and its applications are described targeting quantitative analyses of wide ranges of T in gas, liquid, and solid separately. In a fusion reactor, T in plasma is a new target to be quantified, which is described in Chap. 8, separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Miyake, K. Ichimura, M. Matsuyama et al., Development of a Tritium compatible mass spectrometer. Fusion Eng. Des. 10, 417–421 (1989)

    Article  Google Scholar 

  2. R.E. Ellefson, W.E. Moddeman, H.F. Dylla, Hydrogen isotope analysis by quadrupole mass spectrometry. J Vac. Sci. Technol. 18, 1062–1067 (1981)

    Article  Google Scholar 

  3. J. Sreekumar, T.J. Hogan, S. Taylor et al., Quadrupole mass spectrometer for resolution of low mass isotopes. J. Am. Soc. Mass Spectrom. 21, 1364–1370 (2010)

    Article  Google Scholar 

  4. V.V. Titov, Isotopic quadrupole mass spectrometry of hydrogen and helium. J. Radioanal. Nucl. Chem. 174, 205–222 (1993)

    Article  Google Scholar 

  5. K. Watanabe, H. Miyake, M. Matsuyama, Relative sensitivities of Bayard-Alpert gauges and a qaudrupole mass spectrometer for hydrogen isotope molecules. J. Vac. Sci. Technol. A5, 237–241 (1987)

    Article  Google Scholar 

  6. K. Ichimura, M. Matsuyama, K. Watanabe, Adsorption and desorption of tritium on material for secondary electron multiplier. J. Nucl. Sci. Technol. 21, 56–60 (1984)

    Article  Google Scholar 

  7. R. Lässer, A.C. Bell, B. Grieveson et al., The analytical gas chromatographic system of the JET active gas handling system—Tritium commissioning and use during DTE1. Fusion Eng. Des. 47, 333–353 (1999)

    Article  Google Scholar 

  8. C. Genty, R. Schott, Quantitative analysis for the isotopes of hydrogen—H2, HD, HT, D2, DT and T2—by gas chromatography. Anal. Chem. 42, 7–11 (1970)

    Article  Google Scholar 

  9. M. Saeki, T. Hirabayashi, Y. Aratono et al., Preparation of gas chromatographic column for separation of hydrogen isotopes and its application to analysis of commercially available tritium gas. J. Nucl. Sci. Technol. 20, 762–768 (1983)

    Article  Google Scholar 

  10. R. Lässer, M. Glugla, S. Grünhagen et al., Use of gas chromatography in the tritium laboratory Karlsruhe. Fusion Sci. Technol. 41, 515–519 (2002)

    Article  Google Scholar 

  11. R. Vogd, H. Ringel, H. Hackfort et al., Gas chromatographic separation of hydrogen isotopes on molecular sieves. Fusion Nucl. Technol. 14, 574–578 (1988)

    Google Scholar 

  12. M. Sturm, M. Schlösser, R.J. Lewis et al., Monitering of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy. Laser Phys. 20, 493–507 (2010)

    Article  Google Scholar 

  13. S. Fischer, M. Sturm, M. Schlösser et al., Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy. Fusion Sci. Technol. 60, 925–930 (2011)

    Google Scholar 

  14. S. Fischer, M. Sturm, M. Schlösser et al., Laser Raman spectroscopy for KATRIN. Nucl. Phys. B 229–232, 492 (2012)

    Article  Google Scholar 

  15. M. Schlösser, S. Rupp, H. Seitz et al., Accurate calibration of the laser Raman system for the Karlsruhe tritium neutrino experiment. J. Mole. Struct. 2013, 61–66 (1044)

    Google Scholar 

  16. M.F. L’Annunziata, Nuclear radiation, its interaction with matter and radioisotope decay, in ed. by M.F. L’Annunziata Handbook of Radioactivity Analysis, 2nd edn. (Academic Pr, Amsterdam, 2003)

    Google Scholar 

  17. M.J. Berger, J.S. Coursey, M.A. Zucker, et al., Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. 2014, http://www.nist.gov/pml/data/star/index.cfm

  18. L. Pages, E. Bertel, H. Joffre et al., Energy loss, range, and Bremsstrahlung yield for 10-keV to 100 MeV electrons in various elements and chemical compounds. Atomic Data 4, 1–127 (1972)

    Article  Google Scholar 

  19. R. Collé, Classical radionuclide calorimetry. Metrologia 44, S118–S126 (2007)

    Article  Google Scholar 

  20. A. Bükki-Deme, C.G. Alecu, B. Kloppe, et al., First results with the upgraded TLK tritium calorimeter IGC-V0.5, Fusion Eng. Des. 88, 2865–2869 (2013)

    Google Scholar 

  21. K.M. Song, S.H. Sohn, M.H. Chang et al., Effect of tritium storage vessel and aluminum secondary container on calorimeter performance. Fusion Sci. Technol. 60, 1010–1013 (2011)

    Google Scholar 

  22. G.F. Knoll, Ionization chamber. in Radiation Detection and Measurement, 4th edn. (John Wiley and Sons, Inc, 2010)

    Google Scholar 

  23. M. Matsuyama, A small ionization chamber appropriate to tritium processing systems. Fusion Eng. Des. 18, 91–96 (1991)

    Article  Google Scholar 

  24. M.F. L’Annunziata, Liquid scintillation analysis: principles and practice. in ed. by M.F. L’Annunziata Handbook of Radioactivity Analysis, 2nd edn. (Academic Press, Amsterdam, 2003)

    Google Scholar 

  25. M. Matsuyama, H. Arai, T. Yamazaki, et al., In-situ measurement of high level tritium by Bremsstrahlung counting method (II) characteristics of a beryllium windows. Annl. Rept. Hydrogen Isot. Res. Center Toyama Univ, 13, 51–61 (1993)

    Google Scholar 

  26. M. Matsuyama, K. Watanabe, T. Yamazaki, Improvement of a Bremsstrahlung counting method for measurements of gaseous Tritium. Fusion Technol. 28, 1045–1049 (1995)

    Google Scholar 

  27. W.M. Shu, M. Matsuyama, T. Suzuki et al., Characteristics of a promising Tritium process monitor detecting Bermsstrahlung X-rays. Nucl. Instr. Meth. Phys. Res. A521, 423–429 (2004)

    Article  Google Scholar 

  28. M. Matsuyama, Y. Torikai, M. Hara et al., New technique for non-destructive measurements of Tritium in future fusion reactors. Nucl. Fusion 47, S464–S468 (2007)

    Article  Google Scholar 

  29. M. Rölling, F. Priester, M. Babutzka et al., Activity monitoring of a gaseous Tritium source by beta induced X-ray spectrometry. Fusion Eng. Des. 88, 1263–1266 (2013)

    Article  Google Scholar 

  30. S. Heinze, T. Stolz, D. Ducret et al., Self-radiolysis of tritiated water: experimental study and simulation. Fusion Sci. Technol. 48, 673–679 (2005)

    Google Scholar 

  31. T. Genka, K. Kobayashi, N. Takeuchi et al., A twin type heat flow microcalorimeter for radioactivity measurements. Radioisotopes 37, 115–158 (1987)

    Google Scholar 

  32. M. Matsuyama, K. Takatsuka, M. Hara, Sensitivity of a specially designed calorimeter for absolute evaluation of Tritium concentration in water. Fusion Eng. Des. 85, 2045–2048 (2010)

    Article  Google Scholar 

  33. J. Thomson, Sample preparation techniques for liquid scintillation analysis. in ed. by M.F. L’Annunziata Handbook of Radioactivity Analysis, 2nd edn. (Academic Pr, Amsterdam, 2003)

    Google Scholar 

  34. J. Thomson, Use and preparation of quench curves. LSC Application Note. 2002, PerkinElmer Life Science P11399

    Google Scholar 

  35. F. Verrezen, H. Loots, C. Hurtgen, A performance comparison of nine selected liquid scintillation cocktails. Appl. Radiat. Isot. 66, 1038–1042 (2008)

    Article  Google Scholar 

  36. F. Verrezen, H. Loots, C. Hurtgen, in A Performance Comparison of Nine Selected Liquid Scintillation Cocktails. SCK•CEN-BLG-1052 (2008)

    Google Scholar 

  37. P.E. Warwick, D. Kim, I.W. Crouace et al., Effective desorption of Tritium from diverse solid matrices and its application to routine analysis of decommissioning materials. Anal. Chim. Acta 676, 93–102 (2010)

    Article  Google Scholar 

  38. I.W. Croudace, P.E. Warwick, D. Kim, Using thermal evolution profiles to infer Tritium speciation in nuclear site metals: an aid to decommissioning. Anal. Chem. 86, 9177–9185 (2014)

    Article  Google Scholar 

  39. P. Warwick, The measurement of Tritium in steel. Anal. Commun. 35, 157–160 (1998)

    Article  Google Scholar 

  40. K. Ochiai, T. Hayashi, C. Kutsukake et al., Measurement of Deuterium and Tritium retentions on the surface of JT-60 divertor tiles by means of nuclear reaction analysis. J. Nucl. Mater. 329–333, 836–839 (2004)

    Article  Google Scholar 

  41. M. Friedrich, W. Pilz, G. Sun et al., Tritium depth profiling by AMS in carbon samples from fusion experiments. Phys. Scr. 94, 98–101 (2001)

    Article  Google Scholar 

  42. M. Matsuyama, T. Tanabe, N. Noda et al., Nondestructive measurement of surface Tritium by β-ray induced X-ray spectrometry (BIXS). J. Nucl. Mater. 290–293, 437–442 (2001)

    Article  Google Scholar 

  43. M. Matsuyama, T. Murai, K. Watanabe, Quantitative measurement of surface Tritium by β-ray induced X-ray spectrometry (BIXS). Fusion Sci. Technol. 41, 505–509 (2002)

    Google Scholar 

  44. J. Long, Z. An, Comparison of reconstruction methods of depth distribution of Tritium in materials based on BIXS. Nucl. Instr. Method Phys. Res. B 267, 1852–1855 (2009)

    Article  Google Scholar 

  45. H. Saitoh, T. Hishi, T. Misawa et al., Quantitative visualization of Tritium distribution in Vanadium by Tritium radioluminography. J. Nucl. Mater. 258–263, 1404–1408 (1998)

    Article  Google Scholar 

  46. T. Tanabe, N. Bekris, P. Coda et al., Tritium retention of plasma facing components in Tokamaks. J. Nucl. Mater. 313–316, 478–490 (2003)

    Article  Google Scholar 

  47. K. Hashizume, J. Masuda, T. Otsuka et al., Diffusion behavior of Tritium in V-4Cr-4Ti alloy. J. Nucl. Mater. 367–370, 876–881 (2007)

    Article  Google Scholar 

  48. T. Otsuka, M. Shimada, R. Kolasinski et al., Application of Tritium imaging plate technique to examine Tritium behavior on the surface and in the bulk of plasma-exposed materials. J. Nucl. Mater. 415, S769–S772 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Hara, M., Kawamura, Y., Tanabe, T. (2017). Tritium Measurement I—Tritium in Gas, Liquid, and Solid. In: Tanabe, T. (eds) Tritium: Fuel of Fusion Reactors . Springer, Tokyo. https://doi.org/10.1007/978-4-431-56460-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56460-7_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56458-4

  • Online ISBN: 978-4-431-56460-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics