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Abstract Genotyping-by-sequencing technology is rapidly reducing marker costs 
and increasing genome coverage allowing the widespread use of molecular markers 
and methods in plant breeding. Marker assisted selection (MAS) and recurrent 
selection are based on the selection of statistically significant, marker-trait associa-
tions. However, MAS strategies are not well suited for complex traits controlled by 
many genes. Genomic selection (GS) incorporates genome-wide marker informa-
tion in a breeding value prediction model, thereby minimizing biased marker effect 
estimates and capturing more of the variation due to small effect QTL. In GS, a 
training population related to the breeding germplasm is genotyped with genome- 
wide markers and phenotyped in a target set of environments. That data is used to 
train a prediction model that is used to estimate the breeding values of lines in a 
population using only the marker scores. Prediction models can incorporate perfor-
mance over multiple environments and assess G x E effects to identify a highly 
predictive subset of environments. Because of reduced selection cycle time, annual 
genetic gain for GS is predicted to be two to threefold greater than for a conven-
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tional phenotypic selection program. We have developed a new methodology for 
using genome-wide marker effects to group environments and identify outliers. In 
addition, environmental covariates can be identified that increase prediction accu-
racy and facilitate performance prediction in climate change scenarios. This new 
approach to crop improvement will facilitate a better understanding of the dynamic 
genome processes that generate and maintain new genetic variation.

Keywords Breeding methods • Genomic selection • Genotype by environment
interaction • Marker-assisted selection • Molecular markers • Wheat

This chapter is a review of my presentation at the International Wheat Genetics 
Symposium held in Yokohama, Japan September 13, 2013.

Plant breeding is a predictive science. We are constantly trying to predict the 
performance of selected genotypes. Our evaluation methods are designed to predict 
traits such as grain yield, milling and baking quality, disease resistance. Prediction 
accuracy is important at every step in the breeding program and breeding methods 
are designed to improve accuracy of those predictions. Traditionally, breeding 
methods such as family-based selection, progeny testing, and more recently, the use 
of molecular markers has enabled marker-assisted selection, and genomic selection 
(GS). Novel breeding strategies are driven by technology and new knowledge.

Our molecular breeding goals include allele discovery, allele characterization 
and validation, and parent and progeny selection for superior alleles at multiple loci 
to generate transgressive segregation. We can increase the annual rate of genetic 
gain in several ways. The selection intensity can be increased or we can increase the 
heritability by improving the accuracy of selection or increasing the genetic varia-
tion. However the selection cycle time has the greatest impact on annual rate of gain 
so breeding methods that reduce the cycle time have the most impact.

Meuwissen, Hayes and Goddard first proposed genomic selection methodology 
in 2001 (Meuwissen et al. 2001). This methodology consists of two distinct popula-
tions, a training population that is genotyped with a large number of markers and 
phenotyped for important traits and a breeding population consisting of individuals 
that are genotyped but not phenotyped (Fig. 45.1). The training population consists 
of well-adapted breeding lines and varieties that are phenotyped in the target popu-
lation of environments. Genome-wide markers are considered to be random effects 
and all marker effects on the phenotype are estimated simultaneously in a single 
model. One or more markers are assumed to be in linkage disequilibrium (LD) with 
each quantitative trait locus (QTL) affecting the trait of interest. We use a prediction 
model that attempts to capture the total additive genetic variance to estimate breed-
ing value of individuals based on the sum of all marker effects. In the breeding 
population, genomic estimated breeding values (GEBVs) for each individual are 
obtained by summing the marker effects for that genotype. The prediction model 
can then be used to impose multiple generations of selection. The selected individu-
als can be recycled in the crossing program and/or evaluated in advanced replicated 
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trials. Eventually the best lines are added to the training population and the predic-
tion model is updated.

There are several factors that affect the accuracy of GEBVs. Because it is 
assumed that there is at least one marker in LD with each locus affecting the trait of 
interest, the level and distribution of LD between markers and QTL impact the accu-
racy of GEBVs. Using simulations, Meuwissen (2009) estimated that the minimum 
number of markers for across family predictions would be Ne*L where Ne is the 
effective population size and L is the genome size in Morgans. For example, wheat 
has a genome size of about 30 Morgans and if we assume an effective population 
size of 50, that would indicate that the minimum number of markers required would 
be 1,500. The size of the training population and its relationship to the breeding 
population are also important, and over time, re-training models is required. 
Meuwissen (2009) also estimated the minimum number of records for across family 
predictions would be 2*Ne*L. For wheat, that would be a population size of about 
3,000. However, good accuracies have been reported for populations much smaller 
than that. The breeding population must be closely related to the training population 
for accuracy predictions. Population substructure in the training population can 
inflate accuracies and lead to inbreeding. Many small effect QTL or low LD favor 
Best Linear Unbiased prediction (BLUP) for capturing small effect QTL that may 

Fig. 45.1 Genomic selection training and breeding populations and their interactions in a plant 
breeding program
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not be in LD with a marker. More records are required for low heritability traits, just 
as for phenotypic selection.

Genomic selection was first developed and evaluated by the dairy industry. 
However plants have different constraints as well as some advantages. Obviously, 
mating schemes are quite different, even among different plant species. Animal 
parental values are mainly based on half-sib families with a sire in common among 
the progeny. Population size in animals is based on accumulating records over time 
for many families within a breed. For most crop species large populations can be 
easily generated either using biparental crosses or the progeny from multiple fami-
lies. The ability to replicate is an important factor as well. Inbred lines, testcross 
hybrids, and clonally propagated crops can be replicated in time and space, while 
each animal is a unique genotype and heterozygous. Finally, genotype by 
 environment interaction (GxE) is a more important issue in plant breeding than in 
animal breeding.

Next I would like to present some of the results of GS experiments from the 
Cornell wheat breeding program. Elliot Heffner was a Ph.D. student in my program 
when we initiated our GS research in 2007. He conducted experiments on GS in 
both biparental populations (Heffner et al. 2011b) and across multiple families in 
our breeding program (Heffner et al. 2011a). Jessica Rutkoski, a former Ph.D. stu-
dent in our program has published a review on Genomic Selection for Adult Plant 
Stem Rust Resistance (Rutkoski et al. 2010), a study on GS for fusarium head blight 
resistance (Rutkoski et al. 2012), and methods for imputing missing data without 
ordered markers (Rutkoski et al. 2013).

Heffner et al. (2011b) used two doubled haploid biparental populations to evalu-
ate GS for nine milling and baking quality traits tested over 3 years. The results 
averaged over both populations showed that the GS prediction models were 47 % 
more accurate than the multiple linear regression (MLR) model (Fig. 45.2). For the 
experiment involving multiple families, the training population consisted of 400 
advanced breeding lines planted in an augmented field design in three locations over 
3 years. It was genotyped using 1,500 polymorphic DArT markers and phenotyped 
for 13 agronomic traits. Prediction models included two multiple linear regression 
models, with or without the Kinship Matrix as a covariate, and four GS models, 
ridge regression, Bayes A, Bayes B, and Bayes C pi. The MLR model accuracy was 
similar with or without the Kinship matrix. GS accuracy was similar for all 
 prediction models (~0.60). The GS prediction accuracy was 25 % greater than for 
MLR and phenotypic selection accuracy was 7 % greater than for GS. A compari-
son of eight of the individual traits reveals that the relative accuracy of GS com-
pared to phenotypic selection is highest for the traits with the lowest heritability 
(Fig. 45.3). This highlights an important feature of GS. It is complementary to MAS 
because MAS is most effective for simply inherited, high heritability traits whereas 
GS is relatively more effective for low heritability traits. It is this complementarity 
that facilitates incorporation of GS into a molecular breeding program. To take 
advantage of the features of GS that increase annual genetic gain, a recurrent 
genomic selection program could be used to generate multiple cycles of selection 
per year (Fig. 45.4). In addition, once selections are inbred, whole-genome geno-
types can be used to further select individuals with the highest GEBVs. For the 
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Fig. 45.2 Relative marker-based prediction accuracy (PA) for four quality traits in two biparental 
wheat populations. MLR multiple linear regression, RR ridge regression, Bcpi Bayes C pi

Fig. 45.3 Relative accuracy of GS compared to phenotypic selection (PS) for eight traits of vary-
ing heritability
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recurrent genomic selection, GS models based on additive genetic effects would be 
appropriate, whereas for selecting purelines, models that incorporate non-additive 
effects may be more accurate.

There are several factors that need to be considered when initiating GS. Models 
for biparental populations are population specific but yield a higher accuracy. There 
is reduced epistasis and allele frequencies are balanced. Fewer markers and smaller 
training populations are required. Biparental populations are probably the only 
option for introgression of exotic germplasm. In contrast, multifamily GS allows 
prediction across a broader range of adapted germplasm, sampling of more environ-
ments, and larger training populations. In addition, cycle duration is reduced because 
model retraining is on-going.

Whole-genome genotyping opens up new opportunities for analyzing breeding 
trial data. For example, marker effects instead of genotypes can be used to increase 
GS prediction accuracy (Heslot et al. 2013). Advanced breeding trial data are typi-
cally unbalanced, i.e., all genotypes are not evaluated in all environments and this 
limits the kinds of analyses that can be used. However, if we use marker alleles 
instead, the data are balanced because all markers are evaluated in all environments. 
Heslot et al. (2013) used marker effects to identify outlier environments, classify 
relevant mega-environments, and to select an optimum subset of environments for 
GS prediction. Marker effects for each environment were calculated using the 
Bayesian LASSO GS model. Nearly 1,000 barley advanced lines were evaluated for 
grain yield in 58 European environments. The dataset was unbalanced with only 18 

Fig. 45.4 Integration of GS in a wheat breeding program
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genotypes present in >50 % of the environments. Environment groups were based 
on Additive Main Effects & Multiplicative Interaction (AMMI) analysis, year. 
region, marker effects, and pairwise prediction accuracy between environments. 
Marker effects for all lines in each environment formed a balanced dataset for com-
puting Euclidean distances between environments. Only clustering based on aver-
age reciprocal prediction accuracies significantly increased prediction accuracy. 
Clustering based on marker effects produced four clear subgroups that were not 
related to region or year, but also did not increase prediction accuracy. Reciprocal 
accuracies correlate with genetic correlations between environments based on a fac-
tor analytic model and were useful to measure genetic correlation without the 
numerical issues of factor analytic models. In a second experiment, Heslot et al. 
(2013) developed a protocol using the predictive ability of an environment for 
 optimizing the composition of the training population. The procedure involves 
training a GS model in each environment and computing the mean accuracy for 
each training environment for predicting line performance in the other environ-
ments. They are then ranked and environments are removed one at a time starting 
from the least predictive.

The GS model is then trained and cross validated on the remaining training popu-
lation and is referred to as the “Predictive set”. The removed environments are 
referred to as the “Unpredictive set” and accuracy is predicted using the same GS 
model. Both accuracy measurements are used to decide the cut-off point for the 
optimum set. Using this procedure prediction accuracy rose from 0.54 to 0.61 with 
no change in heritability. Some outlier environments were included in the optimal 
model. Although it was not statistically significant, accuracy in the validation set 
increased from 0.279 to 0.292.

Probably the most important project we have ongoing is the merger of crop mod-
eling methodologies integrating environmental covariates and crop modeling into 
the genomic selection framework to predict G*E (Heslot et al. 2014). Crop model-
ing has the goal of assessing the impacts of climate change on productivity and how 
crops adapt to climate change. Crop modelers calibrate crop models to give reliable 
predictions under baseline and future climate scenarios with the long-term goal of 
enhancing world food security and adaptation capacity. By combining crop model-
ing methods with whole-genome genotyping in a GS framework, we can predict 
G*E for unobserved environments, and thus, performance and stability based only 
on genotype. In addition, we can better understand the characteristics of the target 
population of environments and determine the genetic architecture controlling 
G*E. In this experiment, we used a dataset consisting of grain yield of 2,437 elite 
winter wheat lines grown in 44 environments over 6 years in France and genotyped 
with 1,287 SNP markers. Daily climatic weather data were used to characterize 
environments. In this study, we extended factorial regression to the GS context and 
developed a new machine learning approach to capture the non-parametric response 
of QTL to stresses. This approach was used along with a crop model to enable the 
use of daily weather data in prediction models. Those G*E predictions could be 
used to make breeding decisions for specific adaptation. Physiological integration 
of the environment data involved the use of a crop model (Sirius) to compute the 
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phenology and synchronize early, medium, and late maturing genotypes to the 
weather data. Stress covariates by developmental stage were derived by using 
knowledge about sensitivity of specific growth stages to abiotic stresses that were 
used as independent covariates in statistical genetic models for effect estimation and 
prediction.

Model description:

 
y u f xij j i i j ij= + + + +m b g e( ) ,

 

where Mu is the intercept, the Beta term is the environment effect, u is a genotype 
main effect, Gamma is the sensitivity of each genotype to a stress covariate x, that 
can be transformed by a function f(), and Epsilon is the model residual. Crop model-
ing allows us to leverage agronomy knowledge, reduce dimensionality and non-
linearity, and enables the use of existing breeding data. Performance is predicted as 
main effect plus G*E deviation and environment clustering based on predicted 
G*E. Because G*E can be predicted for any genotype in any environment, it is pos-
sible to use the table of G*E predictions to cluster environments and investigate the 
structure of the target population of environments. For this data set, environments 
were mainly grouped by year but also showed a North/South trend. If we plot the 
accuracy of the models with and without including G*E, we can get an overall view 
of the importance of this term (Fig. 45.5). Each dot represents an environment, and 
a dot above the line indicates higher accuracy with the model that included 
G*E. Overall, there was an 11.1 % increase in mean accuracy (P-value 0.02) and a 
10.8 % decrease in the accuracy coefficient of variation. It is important to note that 
the largest gains occurred in environments where accuracies were low. These results 
are important because, if successful, we will be able to predict GxE for any geno-
type based only on genotype. This would allow the breeder to select genotypes that 

Fig. 45.5 Relative prediction 
accuracy of prediction 
models with and without 
modeling G*E
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interact positively with a particular environment, genotypes that minimize GxE, or 
genotypes that interact positively with environmental factors that limit performance.

In summary, GS differs from MAS and Association Breeding in that the underly-
ing genetic control and biological function is not necessarily known. GS preserves 
the creative nature of phenotypic selection to sometimes arrive at solutions outside 
the engineer’s scope. Integrating environmental covariates and crop modeling into 
the genomic selection framework to predict G*E increases prediction accuracy and 
provides insight into the genetic architecture controlling G*E. The most important 
advantages are reductions in the length of the selection cycle resulting in greater 
genetic gain per year.
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