Skip to main content

On the Node Complexity of Threshold Gate Circuits with Sub-linear Fan-ins

  • Conference paper
Neural Networks and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 19))

  • 500 Accesses

Abstract

This paper discusses size-optimal solutions for implementing arbitrary Boolean functions using threshold gates. After presenting the state-of-the-art, we start from the result of Horne and Hush [12], which shows that threshold gate circuits restricted to fan-in 2 can implement arbitrary Boolean functions, but require O(2n/n) gates in 2n layers. This result will be generalized to arbitrary fan-ins (Δ), lowering the depth to n/logΔ + n/Δ, and proving that all the (relative) minimums of size are obtained for sub-linear fan-ins (Δ < n − logn). The fact that size-optimal solutions have sub-linear fan-ins is encouraging, as the area and the delay of VLSI implementations are related to the fan-in of the gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, M. (1993) Bounds on the Number of Hidden Units in Binary-Valued Three-Layer Neural Networks. Neural Networks 6, 855–860

    Article  Google Scholar 

  2. Arbib, M.A. (1995) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge

    Google Scholar 

  3. Baum, E.B. (1988) On the Capabilities of Multilayer Perceptrons. J. Complexity 4, 193–215

    Article  MathSciNet  MATH  Google Scholar 

  4. Beiu, V. (1996) Entropy Bounds for Classification Algorithms. Neural Network World 6, 497–505

    Google Scholar 

  5. Beiu, V. (1996) Digital Integrated Circuit Implementations. Chapter E1.4 in [9]

    Google Scholar 

  6. Beiu, V. (1998) On the Circuit and VLSI Complexity of Threshold Gate COMPARISON. Neurocomputing 19, 77–98

    Article  Google Scholar 

  7. Beiu, V., De Pauw, T. (1997) Tight Bounds on the Size of Neural Networks for Classification Problems. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds.) Biological and Artificial Computation. Springer-Verlag, Berlin, pp. 743–752

    Google Scholar 

  8. Bruck, J., Goodmann, J.W. (1990) On the Power of Neural Networks for Solving Hard Problems. J. Complexity 6, 129–135

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiesler, E., Beale, R. (1996) Handbook of Neural Computation. IoP, New York

    Google Scholar 

  10. Hammerstrom, D. (1988) The Connectivity Analysis of Simple Association —or— How Many Connections Do You Need. In: Anderson, D.Z. (ed.) Neural Information Processing Systems. AIPress, New York, pp. 338–347

    Google Scholar 

  11. Hassoun, M.H. (1995) Fundamentals of Artificial Neural Networks. MIT Press, Cambridge

    MATH  Google Scholar 

  12. Horne, B.G., Hush, D.R. (1994) On the Node Complexity of Neural Networks. Neural Networks 7, 1413–1426

    Article  Google Scholar 

  13. Hu, S. (1965) Threshold Logic. Univ. California Press, Berkeley

    Google Scholar 

  14. Huang, S.-C., Huang, Y.-F. (1991) Bounds on the Number of Hidden Neurons of Multilayer Perceptrons in Classification and Recognition. IEEE Trans. Neural Networks 2, 47–55

    Article  Google Scholar 

  15. Lupanov, O.B. (1973) The Synthesis of Circuits from Threshold Elements. Problemy Kibernetiki 20, 109–140

    MathSciNet  Google Scholar 

  16. Minnik, R.C. (1961) Linear-Input Logic. IRE Trans. Electr. Comp. 10, 6–16

    Google Scholar 

  17. Neciporuk, E.I. (1964) The Synthesis of Networks from Threshold Elements. Soviet Mathematics 5, 163–166. English trans]. (1964) Automation Express 7, 27–32 & 35–39

    Google Scholar 

  18. Parberry, I. (1994) Circuit Complexity and Neural Networks, MIT Press, Cambridge

    MATH  Google Scholar 

  19. Shannon, C. (1949) The Synthesis of Two-Terminal Switching Circuits. Bell Sys. Tech. J. 28, 59–98

    MathSciNet  Google Scholar 

  20. Siu, K.-Y., Roychowdhury, V.P., Kailath, T. (1991) Depth-Size Tradeoffs for Neural Computations. IEEE Trans. Comp. 40, 1402–1412

    Article  MathSciNet  Google Scholar 

  21. Williamson, R.C. (1990) E-Entropy and the Complexity of Feedforward Neural Networks. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems. Morgan Kaufmann, San Mateo, pp. 946–952

    Google Scholar 

  22. Wray, J., Green, G.G.R. (1995) Neural Networks, Approximation Theory, and Finite Precision Computation. Neural Networks 8, 31–372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beiu, V. (2003). On the Node Complexity of Threshold Gate Circuits with Sub-linear Fan-ins. In: Rutkowski, L., Kacprzyk, J. (eds) Neural Networks and Soft Computing. Advances in Soft Computing, vol 19. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1902-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1902-1_18

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0005-0

  • Online ISBN: 978-3-7908-1902-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics