Whitestein Series in Software Agent Technologies, 1-13
(© 2007 Birkhéuser Verlag Basel/Switzerland

Nexus: Self-organising Agent-based Peer-to-Peer
Middleware for Battlespace Support

Alex Healing, Robert Ghanea-Hercock, Hakan Duman and
Michal Jakob

Abstract. The problem facing the security and defence communities is the
volume, complexity and timeliness of information. In particular the ability to
locate and access the right ICT service at the right time is crucial to achiev-
ing real-time responsiveness and situational awareness. The Nexus system is
a Peer-to-Peer (P2P) agent-based middleware that creates a fully distributed
and highly resilient Service Oriented Architecture (SOA). The combination
of a structured P2P overlay network and autonomous service discovery, de-
livers a powerful capability to support real-time operations in either security
or defence applications. This paper outlines the overall architecture of the
Nexus system and its application in a defence scenario with a detailed review
of the service selection algorithm utilised, termed Mercury. Mercury provides
an autonomous, efficient and distributed service selection framework and col-
laborative algorithms for SOA construction and real-time adaptation.

1. Introduction

Future military force requirements will demand a migration towards ever increasing
levels of ICT automation and self-organising capability. This is a simple function
of reduced administrative support, increasingly complex networked systems and
the ever shrinking time available for response. In addition the need for shared sit-
uational awareness across tactical and coalition spheres makes manual service con-
figuration a logistic nightmare. This chapter reviews a solution based on combing
the best features of P2P and SOA approaches to create a self-* service platform.
An overview of the Nexus autonomic middleware is first given, followed by an
in-depth technical discussion of one of its components - adaptive service selection.

2 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

2. Approach

The first phase of the Nexus project [7, 9] demonstrated the value of an agent-
based P2P middleware for the discovery and fusion of NEC services. The Nexus
middleware is based on three key paradigms: P2P computing, autonomous agents
and SOA [5]; all of which have been identified as key components of future NEC
network architectures [1]. Existing implementations of SOA, as applied in the civil
domain, suffer from several issues that make them unsuitable for volatile envi-
ronments. These include centralized service discovery and process orchestration,
and fixed manually specified workflows. These factors lead to fragile, non-adaptive
and difficult-to-maintain network applications. The aim is to develop a hardened,
agent-based SOA implementation that meets the strict reliability requirements of
the NEC domain and accommodates the needs of network-centric information fu-
sion applications. More specifically, the following capabilities are being developed
either as a direct part of Nexus II middleware or by integrating technologies from
other projects within the Hyperion cluster [2]:

e Seamless and reliable service delivery in volatile environments

e Request prioritisation and load-balancing

e Resilience to volatility of the underlying network infrastructure: by adopting
a peer-to-peer architecture Nexus maintains its operability even if a large
subset of services or the network itself becomes unavailable.

e Decentralised service discovery whereby networked resources are discovered
based on their advertised properties and real-time information regarding their
dynamic attributes without reliance on a centralised repository.

e Semantic and adaptive service selection based on dynamically maintained
quality-of-service profiles.

e Proactive monitoring and automated service substitution: The state of ser-
vices is actively monitored and should a failure occur the failed resource is
rapidly substituted with the closest alternative, preserving the overall capa-
bility.

e Filtering of information services based on their semantic relevance to the user
as well as imposing some structure at the messaging layer of the middleware
allowing bandwidth to be conserved.

In order to offer the necessary resilience Nexus adopts an entirely decentralised
approach. At the lowest level, a P2P overlay network is constructed, either directly
or indirectly, connecting each of the nodes in the network running Nexus with each
other. Similar to [12, 18], the overlay network is then coupled with component-
model technologies which in our case offer a Publish/Subscribe (Pub/Sub) struc-
tured messaging layer from which higher level management of the network can be
constructed.

Each Nexus node can host a number of services and these are made available
through the middleware by means of advertising their associated metadata on the
messaging layer. Users of Nexus are required to connect to only a single node from
where the middleware allows them to discover resources throughout the network

Nexus: Middleware for Battlespace Support 3

and manage their view and usage of the information services according to their
requirements.

We adopt the Autonomic Computing [10, 13] paradigm which introduces
self-* capabilities to allow Nexus to intelligently and autonomously handle the
dynamic environment for which it is intended; including changing requirements of
users, unreliable service availability, or failure of the underlying physical network.

Nexus is entirely implemented in the Java programming language and relies
on several open-source third party libraries. In particular, the current embodiment
of Nexus builds on an open-source P2P implementation of Java Message Service
(JMS) [8] to provide the majority of the functionality of the bottom two layers in
Fig. 1.

\}\

Service P Interaction
s S 7 (o))
ervice: il 77 P 7/ c User requirement-based filtering/orchestration
i 7 N P e é Resource Management
7
£
Nexus Peer » 4 Q Service Metadata Semantics
(@]
o R
Noxds goor E Messaging
9 N £
i B A N . S Publish/Subscribe JMS Topics
5 -
4 AN < Discovery
Nexus Peer N
User Service N
AN L Peer-to-Peer Overlay

FIGURE 1. Nexus Autonomic Middleware Architecture.

IP multicast is used to discover other Nexus peers and construct the overlay
whereby each peer advertises itself on a common channel thus allowing each peer
to know the presence of others. JMS topics provide Pub/Sub functionality for the
message-oriented component of Nexus and allow for information service advertise-
ments to be structured in their transmission across the network. Each peer acts as
a message broker and routes messages to peers that are subscribed to the topic on
which the message was published. The topics can be structured into a hierarchy,
allowing one to subscribe to only messages concerning a specific subset of services.
To some degree, the semantics relating to the service descriptions in the resource
layer can be exposed to the messaging structure in the layer below. The routing of
messages throughout the overlay can therefore be linked to the semantic relevance
of the resources that the messages describe to each peer. This capability is of value
in reducing the overall bandwidth requirements of the supported applications and
services.

There are numerous aspects of the architecture to which autonomic com-
puting principles may be applied. For example, the driving of the aforementioned
messaging structure by the service metadata may be an autonomous process. At

4 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

the lowest level, the overlay network is self-organising in that changes to the topol-
ogy are dealt with seamlessly allowing for new peers joining the network to be
discovered by others as well as the overlay to adapt their routing when peers are
removed from the network.

The focus of the autonomic capability, however, is at the upper levels of
the system model. Agent-based approaches to service orchestration are being in-
vestigated as well as methods to enable self-healing to fulfil a given user service
requirement in the case of a service failure. These two aspects are related and
both rely on the system understanding, to some degree, (a) what the user require-
ments are, (b) what services are available and how they relate, (¢) the expected
Quality-of-Service (QoS) services can deliver in a certain context.

Service selection is a key element of a resilient service-oriented middleware
providing means to route service requests to the providers which best fit for the
task. The problem becomes increasingly difficult in volatile environments where
the availability and performance of service providers can change rapidly. In such
situations, it is essential that the middleware has the ability to keep track of
constant changes and updates its selection procedures accordingly. Decentralised
adaptive mechanisms are a promising way in which this can be achieved. In the
following section, we describe Mercury adaptive service selection which has been
developed as part of the Nexus middleware. The description serves as an exam-
ple of a concrete implementation of some of the autonomic principles mentioned
previously.

3. Autonomic Computing Case Study - Mercury Adaptive Service
Selection

3.1. Overview

The Mercury framework [6] is designed for application within an SOA and as such
assumes a network of interconnected devices, each capable of hosting a number of
processes. The processes may adopt at least one of two roles: service provider or
consumer. Service providers offer capabilities that other devices (consumers) can
access and use. Mercury-based service-selection takes place on the consumer side
and assumes that for every device where there is a service consumer, a selector
agent is hosted. Thus in Nexus, we envisage embedding a selector agent at each
Nexus node.

Mercury relies on there being some service discovery mechanism in the SOA
in order to gain a list of functionally capable service providers for a particular task.
This functional discovery is based on those attributes that the service providers
advertise in their description and can be provided by other components of Nexus.
The Mercury selector agents then use the list of capable services as a basis for
further finer-grained, non-functional selection. This is achieved by aggregating QoS
data for each of the providers through the consumer’s experience of them and
ranking them accordingly. The result is a model of selection learnt over time which

Nexus: Middleware for Battlespace Support 5

distinguishes those services which are best at performing the task in terms of the
QoS they are expected to deliver.

The QoS data of providers is stored in an instance-based model local to each
selector agent and is parameterised by the task, as well as the context. Context
is defined as the set of attributes which are external to the task requirements but
nevertheless may influence the performance of providers (e.g., performing differ-
ently at different times of day). A particular service selector therefore builds up
a model of how suited each provider is at fulfilling each particular task in each
context.

The main contribution is the design of an efficient distributed service selec-
tion framework and (collaborative) algorithms for its construction and real-time
adaptation. The learning techniques used are similar to those in reinforcement
learning [16], however are novel in the degree to which they are adaptive. Specif-
ically, a decision function is employed (Fig. 2) to ensure that the probability of
exploration (selection of services for which there is little or no prior data in the
model) is linked to the relative improvement expected when exploration is pursued
over exploitation (selection of those for which there is a large amount of data).
An adaptive momentum mechanism for updating the model has been developed
so that the incorporation of new data into the model is dependent on the amount
and recency of the information already stored. The methods used allow a system of
multiple agents to be adaptive to changes in the service environment improving the
overall QoS of the system, and may be made more effective through introducing
collaborative strategies.

Task

? Context

Find the closest
register

Decide the strategy

Select the top service Select a service using
from the registry directed exploration

Selected service
r~ 9

> @<

Nearest register

Exploit Explore

A

Return the selected
service

FIGURE 2. Exploration/Exploitation, Decision.

6 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

Two collaborative gossiping strategies have been investigated which vary
in the degree to which the selector agents share information. The first strategy,
anonymous gossiping, involves only partial sharing of information and allows se-
lector agents to gain a better estimation of the distribution of QoS attainable in
the network on which the exploration-exploitation control is based. The second
collaborative strategy, full gossiping, involves sharing detailed information about
providers between selectors to speed up learning through exploration. The agents,
although cooperative may, however, choose to be selective with the information
about providers which they share with others so as not to create unfavourable
competition on a subset of service providers, and hence undermine their own per-
formance - secretive full gossiping.

The task processing cycle is illustrated in Fig. 3 whereby a task is dispatched
to the selector agent and based on both the results of functional service discovery
and the selection model built up so far, a service is selected to process the task.
The QoS with relation to the task is calculated and used to either augment the
model if the chosen service was not experienced in the past, or adapt the model in
the case that there was past experience.

Task

Context

ST=1ET0 - R P Service Discovery
service ‘

T
Service

Process the task |gummmmrssssmsmsssnsnsns) ‘

Task result

Evaluate QoS

received

Updat the selection
model

Task processing record

[

Share the experience]

Return task result

Ficure 3. Task process cycle.

The selection model consists of registers which represent clusters of experience
for services used for particular tasks and contexts and are used to simplify the
problem space. An important autonomous decision that the selector agents must
make is whether to exploit their existing (usually incomplete) model and choose
the service which they expect will act best or explore the service landscape further
and either select a service for which there is a sub-optimal expectation of QoS or
for which there is no prior experience. In Mercury, the calculation of the expected
gain from exploration is distributed by making the agents collaboratively share

Nexus: Middleware for Battlespace Support 7

their expected outcomes. This ensures that agents have a reliable understanding
of the distribution of QoS achievable throughout the network of services, improving
their decision-making ability of whether to explore or not. Further details of the
Mercury framework and similar approaches in literature are discussed in depth in
[6]. This includes the defined structure of the model and the precise algorithms
involved with its construction and adaptation.

3.2. Related Work

The majority of related work addresses the problem of service selection based on
QoS by formalising the QoS requirement space. This is often achieved by defining
a QoS ontology [11, 20-22] which is used to specify the qualities that constitute
QoS. This is then used for a consumer of a service to specify strict requirements
as well as advertising certain quality capabilities from the provider side. Mercury
addresses the need for more work dealing with ranking services based on their QoS
without explicit QoS requirements as suggested in [19].

The notion of providers advertising their own quality capability, however,
brings about the question of trust, which is dealt with by the related works through
trust and reputation modelling, in particular [11, 17]. Trust can be used to build re-
lationships between consumers and providers explicitly based on reputation; how-
ever the alternative approach taken by Mercury is to build up relationships im-
plicitly based on agent learning dynamics and their interactions with other agents,
the details of which make up the main contribution of this work.

A small number of works acknowledge that defining quality requirements and
capabilities using precise terms is not always suitable and that instead fuzzy terms
of quality may be adopted [4, 20]. It is envisaged that the Mercury framework will
be extended to adopt this approach; however, this is left for future work.

In [22], a multidimensional QoS model similar to that of Mercury is presented,
although Mercury goes further to propose a mechanism for which this model can
be populated in a collaborative fashion using a multi-agent system.

Much of the work surveyed adopts a decentralised (P2P) architecture com-
bining agents to perform collective modelling. Of particular relevance are [3] and
[11]: in the former, a reputation model is built based on peer votes for quality;
whilst in the latter, quality ratings are shared via rendezvous nodes in the net-
work. Sonnek et al. [15] have developed and evaluated a task allocation mechanism
based on statistical modelling of provider reliability. In contrast to our approach,
they use a central reputation server, and they do not consider competition between
the clients of the allocation mechanism.

‘We have previously conducted work using a more theoretical approach whereby
relationships with service providers are established based on past experience and
simple rules which cause emergent self-organisation of peers [14]. Mercury builds
on this work by adding task and context-aware capabilities in the internal model
of service selection and by introducing the notion of designated selector agents
which may collaborate in order to further improve their selection behaviours.

8 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

3.3. Experimental Analysis

In order to quantitatively compare the main features of the Mercury framework
a simulation environment has been developed which can be populated with n
providers of a single service and m service selector agents. We abstract away from
the notion of consumers in this case and assume that both the task and context
parameters of the problem stay constant.

We were particularly interested in investigating the effectiveness of the system
in the case where QoS of a particular service degrades depending on how many
simultaneous connections there are to it at any one time. In this sense there is
competition for resources and in order to reach an optimal configuration of service
selection, it is necessary for the selector agents to both be able to form relationships
with certain providers whilst remaining adaptive to changes. In the simulation, the
environment is dynamic in the sense that resultant QoS is non-deterministic from
an individual selector’s point of view due to competition and the distribution of
QoS capability can be parameterised.

For all of our experiments the simulation was set up with 30 service providers
and 5 selector agents and consumers. The QoS capability distribution was set to
uniformly increase such that the 15¢ provider had the minimum capability and the
30*" provider had the maximum (zero and one, respectively). At each time step in
the simulation, each selector agent chooses a provider to be invoked and receives
the measure of QoS from the provider as a result. The internal selection model
is built up through subsequent time steps and at the end of each time step, each
selector agent may gossip with other selector agents, depending on their gossiping
strategy. The results are averaged over 10 runs.

The first set of experiments was used to compare the different selector agent
collaboration strategies on the resultant system (global) QoS attained (Figure 4).
It is clear that gossiping enables the QoS to be increased faster and rather un-
surprisingly full gossiping produces the fastest rate of QoS increase through the
initial stages. The full gossiping approach would be highly effective if at some
point the service landscape were to change dramatically. With little or no provider
churn, though, full gossiping actually results in a lower QoS than if there was no
communication. This demonstrates how, by sharing information about the “best”
provider with other agents results in unfavourable competition whereby relation-
ships between a selector S; and a particular provider P becomes infected by an-
other selector S; which has gained information about P from S; and so believes
that such a relationship is best for it too. In this case, the global QoS actually de-
creases. Secretive full gossiping aims to counteract this effect by not sharing “best”
providers between selector agents. Indeed, Fig. 4 indicates that the resultant QoS
is highest when using the secretive full gossiping strategy. A slight lag compared
to the full gossiping curve can be seen and this represents the trade-off of not shar-
ing with other agents the top provider. The secretive full gossiping strategy also
clearly performs best in the aggregate performance comparison (Table 1), which
takes into account both the resulting level of QoS and the speed with which it is

Nexus: Middleware for Battlespace Support 9

achieved. The anonymous gossiping strategy clearly also proved to be very good
but elicits slower convergence which demonstrates that there is a case for sharing
direct references to providers such as in the full and secretive strategies. Never-
theless, its effectiveness highlights the importance of collaborating to improve the
data on which the exploration/exploitation decision is based.

Collaborative strateqy | Aggregate performance
No communication 0.65
Anonymous gossiping | 0.69
Full gossiping 0.65
Secretive full gossiping | 0.71

TABLE 1. Average aggregate effect of different selector agent col-
laboration strategies on resultant system QoS derived by averag-
ing each of the 25-cycle sequences.

Communication methods comparison

0.8
075 M‘\y
0.7 W —
—e— nNo communication
% 0.65 4 —-— anonymc‘)u-s gossiping
(<] —a— full gossiping
06 / //// —»— secretive gossiping
0.55
05 *HFHr——F77—— T T T T
1 3 5 7 9 1 13 15 17 19 21 23

Cycle

FIGURE 4. Effect of different selector agent collaboration strate-
gies on resultant QoS.

The second set of experiments set out how the adaptive exploration prob-
ability mechanism employed by Mercury compared to a fixed strategy. For all
the experiments the secretive full gossiping strategy was used although the other
strategies produced similar results when tested.

Fig. 5 shows the results from this second experiment set and shows that the
adaptive exploration mechanism is particularly useful in the initial stages where

10 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

little is known about the services available. It also results in a level of QoS almost
as good, as the best fixed level of exploration found a value of ¢ = 0.2 in an &-
greedy strategy [16] resulting in the highest average QoS. The main use of the
adaptive exploration, though, is the adaptivity which it gives the system, allowing
the selector agents to choose the appropriate amount of exploration given the
conditions in the network and the accuracy of their selection models, rather than
performing “blindly” following a fixed probability of exploration, or perhaps a
pre-defined exploration-exploitation scheduling function.

Exploration-Exploitation control logic

0.85 -
0.8 1
075 W
w 071 —e—fixed (0.2)
8 —=— fixed (0.5)

0.65 —a— adaptive
wl

0.55 ////
12 3 45 6 7 8 9 101 1213 14 1516 17 18 19 20

Cycle

FIGURE 5. Mercury adaptive vs fixed probabilistic (e-greedy) strategies.

Fig. 6 is an illustration of how the probability of exploration changes over time
on average in the experiments. In casing like the experimental set-up, where the
QoS data remains relatively static over time, we see an exponential decrease of the
likelihood of exploration as the selector agents become increasingly confident with
their model that they’re building up and the relative advantage of exploring new
services over exploiting those deemed best decreases. In a more dynamic scenario
we’d see this graph peak at times of change of the service landscape where better
services are introduced or perhaps some existing services are able to offer a higher
level of QoS. The peaks would signify the selector agents reacting to this change in
the service landscape accordingly and the potential for increased exploration would
quickly spread throughout the population by means of (anonymous) gossiping.

The Mercury framework is a concrete illustration of how emergent prop-
erties can be leveraged to improve global system behaviour in Service-Oriented
Architectures, such as Nexus. The combination of local decision-making (explo-
ration/exploitation strategy) with diffusion of QoS information (gossiping) allows
a population of selectors with variable needs to collectively identify and converge
toward a configuration that meets the requirements of a majority of participants.

Nexus: Middleware for Battlespace Support 11

Adaptive Exploration Probability

0.8 \
0.6 \
0.5 \

0.4 \

0.3 \

- MMA

123456 7 8 910111213141516171819202122232425

Probability of Exploration

Timesteps

F1GURE 6. Exponential decrease of exploration probability over
time as a result of the adaptive mechanism.

Moreover, this distributed problem-solving is largely implicit: the establishment
of preferential relationships between selectors and providers incorporates any bias
associated with initial conditions and/or the influence of the early history of the
system. For instance, in the case that there is competition between two or more
selectors for a contended resource, the progressive gain of momentum will ensure
that random fluctuations are amplified to the point where only an adequate sub-
set of all competing selectors keep their affiliation with the service. By forcing the
"losers’ to identify an alternative provider, this process usually leads to improved
global QoS, without any need for central planning or explicit negotiations between
selectors.

4. Conclusion

Within the defence domain the problem of data overload continues and will be
greatly magnified by the arrival of new high bandwidth sensor arrays and persistent
surveillance systems. In addition the lack of skilled IT support manpower makes
the problem particularly acute in the defence sector. The Nexus platform is an
attempt to merge the best of autonomic computing and agent-based techniques
to create a self-organising and self-healing service delivery capability. The result
combines the resilience of P2P networks with the service management and legacy

12 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

integration power of SOA approaches. The resulting architecture is intrinsically
scalable, robust and can be applied at the tactical, operational and back-end layers
of deployment. Current development is now focused on integrating new capabilities
for ontology management, 3D scenario visualisation, and embedded security for the
network itself. These activities are part of the wider cluster of projects within the
DIF DTC [2] termed Hyperion.

The race to achieve Network Enabled Capability (or NCW) is a grand chal-
lenge endeavour which can only be realised through the application of autonomous
agents and self-* system approaches, such as Mercury adaptive service selection.
The Nexus platform demonstrates some of the promises such systems can provide.

References

[1] A. Alston, “Network Enabled Capability - The Concept,” Journal of Defence Science
8(3), 108-116, 2003.

[2] Data and Information Fusion Defence Technology Centre (DIF DTC),
www.difdtc.com

[3] F. Emekci, O. Sahin, D. Agrawal and A. Abbadi, “A Peer-to-Peer Framework for
Web Service Discovery with Ranking,” in Proceedings of the IEEE International
Conference on Web Service (ICWS’04), Washington DC, USA, 2004, p. 192.

[4] C.- L. Huang, C.- C Lo, Y. Li, K.- M Chao, J.- Y Chung and Y. Huang, “Service
Discovery through Multi-Agent Consensus,” in Proc. of IEEE Int. Workshop on
Service-Oriented System Engineering (SOSE’05), pp. 37-44, 2005.

[5] M. N. Huhns, M. P. Singh, “Service-Oriented Computing: Key Concepts and Prin-
ciples,” IEEE Internet Computing 9(1), pp. 75-81, 2005.

[6] M. Jakob, A. Healing, F. Saffre, “Mercury: Multi-Agent Adaptive Service Selection
Based on Non-Functional Attributes,” to appear in Proc. of the 2nd International
Workshop on Engineering Emergence in Decentralised Autonomic Systems,

[7] M. Jakob, N. Kaveh and R. A. Ghanea-Hercock, “Nexus - Middleware for Decen-
tralized Service-Oriented Information Fusion,” in Proc. of Specialists’ Meeting on
Information Fusion for Command Support, The Hague, Nov 2005.

[8] Java Message Service, http://java.sun.com/products/jms/

[9] N. Kaveh, R. Ghanea-Hercock, “NEXUS: Resilient Intelligent Middleware,” BT
Technology Journal, 22(3), pp. 209-215, 2004.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE Com-
puter, 36(1), pp. 41-50, 2003.

[11] E. M. Maximillen and M. P. Singh, “Multiagent System for Dynamic Web Services
Selection,” in Proc. of the AAMAS Workshop on Service-Oriented Computing and
Agent-Based Engineering (SOCABE), Utrecht, July 2005.

[12] R. Mondejar et al., “Towards a Decentralized p2pWeb Service Oriented Architec-
ture,” in Proc. of 2nd Int. Workshop on Collaborative P2P Information Systems
(COPS 2006), Manchester, UK, 2006.

[13] M. Paolucci and K. Sycara, “Autonomous Semantic Web Services,” IEEE Internet
Computing, 7(5):34-41, 2003.

Nexus: Middleware for Battlespace Support 13

[14] F. Saffre and H. R. Blok, “SelfService: A theoretical protocol for autonomic distri-
bution of services in P2P communities,” in Proc. of 12th IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems, Maryland,
April 2005, pp. 528-534.

[15] J. Sonnek, M. Nathan, A. Chandra and J. Weissman, “Reputation-Based Scheduling
on Unreliable Distributed Infrastructures,” in Proc. of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCS’06), 2006.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 1998.

[17] W.T. Teacy, J. Patel, N.R. Jennings and M. Luck, “Travos: Trust and reputation in
the context of inaccurate information sources,” Autonomous Agents and Multi-Agent
Systems, 12(2), 2006.

[18] P. Van Roy, A. Ghodsi, S. Haridi, J.- B. Stefani, T. Coupaye, A. Reinefeld, E. Winter,
R. Yap, “Self Management of Large-Scale Distributed Systems by Combining Peer-
to-Peer Networks and Components,” CoreGRID Technical Report, TR-0018, 2005.

[19] L.- H. Vu, M. Hauswirth and K. Aberer, “Towards P2P-based Semantic Web Service
Discovery with QoS Support,” in Proc. of Workshop on Business Processes and
Services (BPS), Nancy, France, 2005.

[20] P. Wang, K.- M Chao, C.- C Lo, C.- L Huang and Y. Li, “A Fuzzy Model for
Selection of QoS-Aware Web Services,” in Proc. of IEEE International Conference
on e-Business Engineering (ICEBE’06), 2006.

[21] X. Wang, T. Vitvar, M. Kerrigan, I. Toma, “Synthetical Evaluation of Multiple
Qualities for Service Selection,” in Proc. of the 4th International Conference on
Service Oriented Computing, Springer-Verlag LNCS series, Chicago, USA, December,
2006.

[22] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
“QoS-Aware Middleware for Web Services Composition,” IEEE Transactions on
Software Engineering, 30(5), May 2004.

Alex Healing, Robert Ghanea-Hercock and Hakan Duman

Pervasive ICT Research Centre

British Telecom, United Kingdom

e-mail: alex.healing@bt.com
robert.ghanea-hercock@bt.com
hakan.duman@bt.com

Michal Jakob

Gerstner Laboratory

Czech Technical University

Czech Republic

e-mail: jakob@labe.felk.cvut.cz

