
Designing Proof of Human-Work Puzzles
for Cryptocurrency and Beyond

Jeremiah Blocki1(B) and Hong-Sheng Zhou2

1 Purdue University, West Lafayette, USA
jblocki@purdue.edu

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. We introduce the novel notion of a Proof of Human-work
(PoH) and present the first distributed consensus protocol from hard Arti-
ficial Intelligence problems. As the name suggests, a PoH is a proof that
a human invested a moderate amount of effort to solve some challenge. A
PoH puzzle should be moderately hard for a human to solve. However, a
PoH puzzle must be hard for a computer to solve, including the computer
that generated the puzzle, without sufficient assistance from a human. By
contrast, CAPTCHAs are only difficult for other computers to solve —
not for the computer that generated the puzzle. We also require that a
PoH be publicly verifiable by a computer without any human assistance
and without ever interacting with the agent who generated the proof of
human-work. We show how to construct PoH puzzles from indistinguisha-
bility obfuscation and from CAPTCHAs. We motivate our ideas with two
applications: HumanCoin and passwords. We use PoH puzzles to con-
struct HumanCoin, the first cryptocurrency system with human miners.
Second, we use proofs of human work to develop a password authentica-
tion scheme which provably protects users against offline attacks.

1 Introduction

The emergence of decentralized cryptocurrencies like Bitcoin [45] has the poten-
tial to significantly reshape the future of distributed interaction. These recent
cryptocurrencies offer several advantages over traditional currencies, which rely
on a centralized authority. At the heart of Bitcoin-like cryptocurrencies is an
efficient distributed consensus protocol that allows for all users to agree on the
same public ledger. When combined with other cryptographic tools like digi-
tal signatures the distributed consensus protocol prevents users from engaging
in dishonest behavior like “double spending” their money or spending another
user’s money. Fundamentally, the applications of a tamper-proof blockchain like
the one in Bitcoin are not limited to cryptocurrency. For example, a tamper
proof blockchain could help us construct secure and fair multiparty computa-
tion protocols [1,7,36,38], develop smart contracts [38,53], and build distributed
autonomous agents, to name a few applications. In this paper we propose a fun-
damentally new technique, Proofs of Human-work (PoH), for constructing a
secure blockchain, and we show that our techniques have several other valuable
applications like password protection and non-interactive bot detection.
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 517–546, 2016.
DOI: 10.1007/978-3-662-53644-5 20

518 J. Blocki and H.-S. Zhou

At its core, Bitcoin’s distributed consensus protocol is based on moderately
hard Proofs of Work (PoW) [23]. In Bitcoin the Hashcash [3] PoW puzzles are
used to extend the blockchain, a cryptographic data-structure in which the pub-
lic ledger is recorded. A PoW puzzle should be moderately hard for a computer
to solve, but the PoW solution should be easy for a computer to verify. Cryp-
tocurrencies like Bitcoin require that this hardness parameter of PoW puzzles be
tunable. An adversary would need to control 51% of the computational power
in the Bitcoin network to be able to alter the blockchain and prevent users
from reaching the correct consensus1. While Bitcoin cleverly avoids the Sybil
attack by using PoW puzzles, there are still many undesirable features of this
distributed consensus protocol. For example, constructing the proofs of work is
energy intensive making the mining process in this distributed consensus proto-
col environmentally unfriendly. Furthermore, the mining process is dominated
by a smaller number of professional miners with customized hardware making it
unprofitable for others to join — this raises the natural concern that a few pro-
fessional miners might collude to alter the public ledger [46]. Indeed, the mining
pool GHash.io2 recently exceeded 50% of the computational power in Bitcoin.
While other techniques like Proofs of Space [25,47] or Proofs of Stake [8] have
been proposed to build the blockchain in a distributed consensus protocol each
of these techniques has its own drawbacks. It is clearly desirable to find new
techniques for reaching a stable distributed consensus. In this paper we ask the
following question:

Is it possible to design proof of human-work puzzles that are suitable for a
decentralized cryptocurrency?

We believe that a cryptocurrency based on Proof of Human-work might offer
many advantages over other approaches. First, the mining process would be eco-
friendly. Second, instead of wasting ‘human cycles,’ it might be possible to base
the proofs of human work on activities that are fun [34], educational [33] or even
beneficial to society [35,56]. Third, proofs of human work are fair by nature in
the sense that two individuals will generally perform a comparable amount of
work to produce a proof of human work. Thus, professional or rich miners would
not have an significant advantage over regular users. By contrast, in Bitcoin
the cost of computing the SHA256 hash function on customized hardware is
dramatically less than the cost of computing SHA256 on personal computing3.
Finally, we believe that the cryptocurrency would be less-vulnerable to 51%
attacks by nation states or by a few professional miners. However, we stress
that our purpose is not to enumerate all of the possible social consequences of

1 Technically byzantine agreement is only possible when the adversary has less than
50 % of the hashing power and the network has high synchronicity — otherwise we
need to ensure that the adversary has at most 33.3 % of the hashing power [29].

2 See http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-
by-anonymous-miner-with-51-network-power/.

3 See https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-
generation-antminer-s7-bitcoin-miner/ (Retrieved 5/4/2016).

http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-generation-antminer-s7-bitcoin-miner/
https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-generation-antminer-s7-bitcoin-miner/

Designing Proof of Human-Work Puzzles 519

a cryptocurrency based on Proofs of Human-work. As with any new technology
HumanCoin could potentially be used for good or for evil. See the full version [12]
for additional discussions.

1.1 Cryptocurrencies Meet AI: Proof of Human-Work Puzzles

In this work we introduce the novel notion of Proofs of Human-work (PoH) which
would be suitable for cryptocurrencies. Proofs of Human-work are fundamentally
different from standard Proofs of Work. Informally, a PoH puzzle should be mod-
erately hard for a human to solve meaning that it should require modest effort
for a human to produce a valid proof of human work — again we require that this
hardness parameter should be tunable. Furthermore, the puzzles should be easy
for a computer to generate, but they need to be difficult for a computer to solve
without sufficient human assistance — even for the computer that generated the
puzzle. Finally, the puzzles need to be publicly verifiable meaning that it should
be easy for a computer to verify the solution to the puzzle without any human
assistance — even if the computer did not generate the puzzle. We stress that
there is no interaction during the puzzle generation or during the puzzle verifi-
cation process, and there is no trusted server in our distributed setting. Thus, a
computer will need to validate proofs of human-work that were generated and
solved by agents with whom it has never interacted.

Our description of a PoH puzzle might remind the reader of a CAPTCHA
(Completely Automated Public Turing-Test to tell Computers and Humans
Apart) [55]. CAPTCHAs have been widely deployed on the Internet to fight
spam and protect against sybil attacks. Informally, a CAPTCHA is a puzzle
that is easy for a human to solve, but difficult for a computer. CAPTCHAs are
based on the assumption that some underlying artificial intelligence (AI) prob-
lem is hard for computers, but easy for humans (e.g., reading distorted letters).

While we do use CAPTCHAs to construct proofs of human work, we stress
that a CAPTCHA itself cannot achieve our notion of proofs of human-work.
Let (Z, σ) be a CAPTCHA puzzle-solution pair. Verifiers who receive the pair
(Z, σ) would not necessarily be able to check that σ is the correct solution with-
out interacting with a human. More importantly, the computer that generates
the puzzle Z could produce the solution σ without any human effort because
CAPTCHA generation algorithms start by randomly selecting a target solution
σ and then outputting a randomly generated puzzle Z with the solution σ. Thus,
a pair (Z, σ) does not constitute a proof of human work. The PoH verifier would
need to ensure, without interacting with any other human agent or any other
computer agent, that the challenge generator did not already have the answer σ
to the puzzle Z.

We believe that our Proof of Human-work puzzles could also have applica-
tions in many other contexts. For example, to limit spam or prevent phishing
attacks it might useful to verify that some human effort went into producing
a message. When a human user is busy it would be convenient if the com-
puter could validate this proof of human effort automatically without needing
to interact with the sender who may no longer be available when the message

520 J. Blocki and H.-S. Zhou

is received. Similarly, proofs of human-work might be a useful tool for honest
preference elicitation — a challenging problem in mechanism design. A human
could demonstrate that a particular issue or outcome is truly important to him
by producing a proof of human-work.

1.2 AI Meets Obfuscation: Constructing Proof of Human-Work
Puzzles

It is not immediately clear how to construct PoH puzzles. CAPTCHAs allow a
computer to generate puzzles that other computers cannot solve, but how could
a computer generate a puzzle that is meaningful to a human without learning the
answer itself? Even if this were possible how could a puzzle verifier be convinced
that the puzzle(s) was generated honestly (e.g., in a way that does not reveal
the answer) without any interaction? How could the verifier be convinced that
the answer is correct without help from a human? Building PoH puzzles is a
challenging problem.

To address these issues, we need to have a way to generate CAPTCHAs
obliviously in the sense that a computer is able to generate a well-formed puzzle
instance Z without learning the corresponding solution σ. This is feasible by
leveraging recent breakthroughs in indistinguishability obfuscation [30]. At an
intuitive level, we can have a CAPTCHA puzzle Z generated inside an obfusca-
tor, and now the corresponding answer σ remains hidden inside the obfuscated
program. We note that the puzzle solution verification can also take place inside
an obfuscated program, even without having human effort involved.

Once we have the idea of generating a CAPTCHA puzzle obliviously as
mentioned above, we then can mimic the steps of constructing Proof of Work
puzzle in Bitcoin to get a PoH scheme. In PoW, a prover/miner is given a puzzle
instance x. The prover will compute the cryptographic hash H(x, s) for many
distinct witness s until the value H(x, s) is smaller than a target value. In PoH,
the miner uses (x, s) as the input for an obfuscated program, and inside the
obfuscated program, a pseudorandom string r is generated from the input (x, s),
and this r will be used for generating the solution σ and the puzzle instance Z.
The miner obtains Z but has no access to the internal state r and σ.

A human miner is now able to obtain the solution σ from the puzzle Z. As
in PoW, the miner will repeat this process until he finds a witness s so that
H(x, s, σ, Z) is smaller than a target value. We note that, once a successful
miner publishes a valid tuple (x, s, σ, Z), any verifier is able to verify it without
interaction with human: The verifier can reproduce Z inside the obfuscated
program along with a verification tag, tag. While the verification tag allows the
verifier to check whether a given solution σ is correct this value will not expose
the solution σ (e.g., tag might be an obfuscated point function which outputs 1
on input x = σ and 0 on all other inputs).

Our PoH scheme maintains many of the same desirable properties as a PoW.
For example, we can tune the hardness of our PoH puzzle generator by hav-
ing the verifier reject a valid triple (x, s, σ, Z) with probability 1 − 2ω so that
a human would need to generate and solve 2ω on average to produce a valid

Designing Proof of Human-Work Puzzles 521

proof of human-work. Thus, the hardness of the PoH puzzles could be tuned by
adjusting ω.

While the conceptual understanding of our PoH construction is quite simple,
the security analysis is a bit tricky. In the PoW, we sample from a uniform
distribution via random oracle, here we need to sample from a more sophisticated
distribution. We rely on a newly developed tool universal samplers by Hofheinz
et al. [32], which is based on the existence of indistinguishability obfuscation and
one-way functions in the random oracle model. As discussed in [32], we stress
that the random oracle is only used outside of obfuscated programs. There has
been tidal wave of new cryptographic constructions using indistinguishability
obfuscation since the roundbreaking results of Garg et al. [30]. However, to the
best of our knowledge we are the first rigorous paper to explore the connection
between AI and program obfuscation4. We believe that obfuscation is a powerful
new tool that has the potential to fundamentally shape the nature of human-
computer interaction. Could program obfuscation allow for a human to interact
with a computer in fundamentally new ways? We view our work as a first step
towards answering this question.

Remark 1. We view our Proof of Human-work construction as a novel proof of
concept that is not yet practical due to the use of indistinguishability obfuscation.
Since the work of Garg et al. [30] several other candidate indistinguishability
obfuscation schemes have been proposed, but a practical obfuscation scheme
would still be a major breakthrough. We note that PoH puzzles do not necessarily
require general purpose indistinguishability obfuscation. It would be sufficient
to obfuscate a few very simple programs (e.g., a CAPTCHA puzzle generator
and a pseudorandom function). Constructing PoH puzzles without obfuscation
(or without general purpose obfuscation) is an interesting open problem.

Other Applications. The applications of our techniques are not limited to
cryptocurrency. In Sect. 5 we use our ideas to build a password authentication
scheme that provably resists offline attacks even if the adversary breaches the
authentication server. The basic idea to to require a proof of human-work during
the authentication process so that it is not economically feasible for the adversary
to check millions of password guesses. We also show how to develop a non-
interactive bot detection protocol which allows Alice to send a message m to Bob
along with a proof of human-work. Bob is able to verify that human-effort was
used in the production/transmission of the message m without ever interacting
with Alice.

4 Several existing altcoins (e.g., Bytecent, CaptchaCoin) do involve CAPTCHAs,
but they rely on a trusted third party to generate the CAPTCHAs. There
has also been informal discussion on the Bitcoin research chatroom about using
obfuscation to base cryptocurrency on proofs of human labor. For example,
see https://download.wpsoftware.net/bitcoin/wizards/2014-05-29.html or http://
vitalik.ca/files/problems.pdf.

https://download.wpsoftware.net/bitcoin/wizards/2014-05-29.html
http://vitalik.ca/files/problems.pdf
http://vitalik.ca/files/problems.pdf

522 J. Blocki and H.-S. Zhou

1.3 Related Work

While there are many variations of CAPTCHAs [55], they are all based on the
fundamental assumption that some underlying AI problem is hard (e.g., read-
ing garbled text [56], voice recognition with distorted audio [52], image recog-
nition [26] or even motion recognition). While several CAPTCHAs have been
broken (e.g., [16,43,54]) there is still a clear gap between human intelligence
and artificial intelligence. We conjecture that in the foreseeable future we will
continue to have viable CAPTCHA candidates suitable for proofs of human
work. CAPTCHAs have many applications in security: fighting spam [55], mit-
igating Sybil attacks [20], preventing denial of service attacks [57] and even
preventing fully automated man-in-the-middle attackers [24]. As we noted ear-
lier CAPTCHAs alone are not suitable as PoH puzzles. Kumarasubramanian
et al. [39] introduced the notion of human-extractable CAPTCHAs, and used
them to construct concurrent non-malleable zero-knowledge protocols.

Canneti et al. [18] proposed a slight modification of the notion of CAPTCHAs
that they called HOSPs (Human Only Solvable Puzzles) as a defense against
offline attacks on passwords. HOSPs are similar to PoHs in that the puzzles must
be difficult even for the computer that generates them, but HOSP puzzles are not
publicly verifiable by a computer and their construction assumes the existence
of a large centralized storage server filled with unsolved CAPTCHA challenges.
This makes their protocol vulnerable to pre-computation attacks5. By contrast,
in Sect. 5 we present a protocol for password storage that provably protects
users against offline attacks, does not require a large centralized storage server
and is not vulnerable to pre-computation attacks. Blocki et al. [9] introduced
GOTCHAs (Generating panOptic Turing Tests to Tell Computers and Humans
Apart) as a defense against offline dictionary attacks on passwords. However,
GOTCHAs have a high usability cost and are not suitable for cryptocurrency
because the puzzle generation protocol requires interaction with a human and
the solutions are not publicly verifiable by a computer. We refer an interested
reader to the full version [12] for more details about CAPTCHAs and HOSPs.

The problem of designing distributed consensus protocols that work in the
presence of an adversarial (Byzantine) parties has been around for decades [2,
22,40]. Typically distributed consensus requires that 2/3 of the parties are hon-
est [40]. On the Internet this assumption is typically not valid because it is often
possible for a malicious user to register for multiple fake accounts — a Sybil
attack [20]. However, amazing ideas have been proposed in the original Bitcoin
white paper [45] under a pseudo identity ‘Nakamoto’. At its core Bitcoin is based
on an elegant distributed consensus protocol which in turn is based on Proof of
Work puzzles [23] to allow users to agree on a common blockchain. Bitcoin uses
the Hashcash Proof of Work algorithm due to Back [3]. Very recently, the under-
lying consensus protocol in the Bitcoin system have been rigorously analyzed in

5 In particular, the adversary might pay to solve every CAPTCHA challenge on the
server. While expensive, this one-time cost would amortize over the number of users
being attacked.

Designing Proof of Human-Work Puzzles 523

the cryptographic setting [29,48]; intensive analysis has also been given in the
rational setting (e.g. [27,51]).

Since the breakthrough result of Garg et al. [30], demonstrating the first
candidate of indistinguishability obfuscation for all circuits, a myriad of uses
for indistinguishability obfuscation in cryptography have been found. Among
these results, the puncturing methodology by Sahai and Waters [50] has been
found very useful. Hofheinz et al. explored the puncturing technique further
introducing and constructing universal samplers in the random oracle model [32].
Their universal sampler is one of the key building blocks in our construction of
proof of human-work puzzles. We remark that our work is distinct from previous
applications in that we are using obfuscation to develop a new way for humans
to interact with computers.

2 Preliminaries

We adopt the following notational conventions: Given a randomized algorithm
A we use y ← A(x) to denote a random sample from the distribution induced
by an input x. If we fix the random bits r then we will use y := A(x; r) to denote
the deterministic result.

We will consider two types of users: machine-only users and human-machine
users. A machine-only user is a probabilistic polynomial time (ppt) algorithm
who does not interact with a human. In general, when we say “human” user
we mean a “human user equipped with a ppt machine.” Accordingly, we also
consider two types of adversaries: a machine-only adversary A, and a human-
machine adversary BH. The machine-only adversary is a ppt algorithm that
does not get to query a human. The human-machine adversary BH is a ppt
algorithm that gets to interact with a human oracle H which could, for example,
solve CAPTCHA puzzles. We typically restrict the total number of queries that
human-machine adversary can make to the human oracle. We say that an human-
machine adversary BH has m human-work units if it is allowed to query H at
most m times. We intentionally under-specify the behavior of the human oracle
H. At minimum we assume H is capable of solving a CAPTCHA puzzle for
one human-work unit (one query to the oracle). However, the human-machine
adversary may use his queries to ask the human oracle to perform arbitrary
tasks H (e.g., solve basic arithmetic problems, write poetry) so long as each task
takes (approximately) the same amount of human-effort as a single CAPTCHA
puzzle.

2.1 CAPTCHAs

CAPTCHAs are a fundamental building block in our construction of Proof of
Human-work puzzles. Traditionally, a CAPTCHA generator G is defined as a
randomized ppt algorithm that outputs a puzzle Z and a solution σ. In every
CAPTCHA generator that we are aware of the program G first generates a
random target solution σ and then produces a random puzzle Z with solution

524 J. Blocki and H.-S. Zhou

σ (e.g., by distorting the string σ). Given public parameters pp for CAPTCHA
puzzle generation we adopt the syntax (Z, tag) ← G (pp, σ) to emphasize that
the target puzzle Z is generated with complete knowledge of the CAPTCHA
solution. In traditional CAPTCHA applications it is desirable for the agent
who generates a puzzle Z to have knowledge of the corresponding answer σ
so that he can verify another agent’s response to the challenge Z. However,
in our setting this property is problematic since the agent who generates the
puzzle Z is trying to produce a convincing proof of human-work. Thus, we will
need additional tools to obtain proof of human-work puzzles from CATPCHAs.
Formally, a CAPTCHA puzzle-system is defined as follows.

Definition 1 (CAPTCHA). A CAPTCHA puzzle system consists of a tuple
of algorithms (Setup, W, G, CH, Verify), where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is the
security parameter), and outputs a system public parameter pp ← Setup(1λ),
which includes a puzzle size parameter � = poly(λ);

– W is a randomized sampling algorithm that takes as input the public parameter
pp and outputs a target solution σ ← W(pp) (e.g., a witness) of length �;

– G is a randomized puzzle generation algorithm that takes as input the public
parameter pp and a solution σ, and outputs (Z, tag) ← G(pp, σ) where Z is a
CAPTCHA puzzle and tag is a string that may be used to help verify a solution
to Z;

– Verify is a verification algorithm that takes as input the public parameters
pp, a puzzle Z along with the associated tag and a proposed solution σ′ outputs
a bit b := Verify

(
pp, Z, tag, σ′). We require that b = 1 whenever (Z, tag) ←

G(pp, σ) and σ′ = σ;
– CH is a solution finding algorithm (i.e., human-machine solver) that takes

as input the public parameter pp and a puzzle Z, and outputs a value a ←
CH(·)(pp, Z) as the solution to the puzzle Z. Here, H(·) denotes the human
oracle which takes intermediate human-efficient objects (such as images) as
inputs, and returns machine-efficient values as outputs.

We typically require that Setup, W, G are probabilistic polynomial time algorithms,
and Verify a deterministic polynomial time algorithm. C should be a probabilistic
polynomial time oracle machine.

For example, if we are defining a text based CAPTCHA puzzle-system the
public parameters pp might specify the set of characters Σ, the set of fonts
and a set of font sizes/colors. The public parameters pp would also describe
the length � = |σ| of the target solution (e.g., the number of characters in the
CAPTCHA). In general, larger security parameters λ would imply longer puz-
zles. W is a randomized algorithm that outputs a random string σ ∈ Σ∗ (the
target solution), and G is the randomized algorithm that produces a puzzle Z
along with a tag which may be used for public verification of a potential solution
σ′. We view the solution function CH as a human equipped with a ppt com-
puter. Typically the computer would just be used to display the challenge to the

Designing Proof of Human-Work Puzzles 525

user, but it could also apply a more sophisticated algorithm to post-process the
user’s answer.

Fixing the security parameter λ we define one human work unit to be the
amount of time/energy that it takes a human to solve one honestly generated
CAPTCHA puzzle Z ← G(pp, σ). Any CAPTCHA puzzle-system should be
human usable, meaning that a typical human can consistently solve randomly
generated CAPTCHA puzzles. While we recognize that solving a CAPTCHA
puzzle may require more effort for some people than for others we will use the
term human-work unit to denote the amount of human effort necessary to solve
one CAPTCHA puzzle with security parameter λ.6

Definition 2 (Honest Human Solvability). We say that a human-machine
solver CH controls m human-work units if the machine C can query the
human oracle H(·) at least m times. We say a CAPTCHA puzzle-system
(Setup, W, G, CH, Verify) is honest human solvable if for every polynomial
m = m(λ) and for any human CH who controls m human-work units, it holds
that

Pr

⎡

⎣
pp ← Setup(1λ);∀i ∈ [m]

(
σ∗

i ← W(pp)
)
;

∀i ∈ [m]
(
(Z∗

i , tag∗
i) ← G(pp, σ∗

i)
)

:
(σ∗

1 , . . . , σ
∗
m) ← CH(·)(pp, Z∗

1 , . . . , Z∗
m)

⎤

⎦ ≥ 1 − negl(λ)

Finally, we require that CAPTCHAs are hard for computers to invert. More
concretely, no (known) ppt adversarial machine should be able to find the solu-
tions to m + 1 honestly-generated puzzles given only m-human work units. We
introduce two similar notions of computer uncrackable CAPTCHAs. The first
version states that an adversary with m human-work units cannot find the solu-
tion to m+1 CAPTCHAs with non-negligible probability when he is only given
the puzzles Z∗

1 , . . . , Z∗
n (n > m).

Philosophical Remark. There are two philosophical positions that one could
take regarding CAPTCHA puzzles, the human oracle H and Artificial Intelli-
gence in general. The first view is that for any class of problems that a human
oracle H can solve there exists a (possibly unknown to mankind) ppt computer
algorithm to solve the same class of problems. The second philosophical view is
that there are some tasks that humans can solve that computers will never be
able to solve (i.e., no ppt computer algorithm can consistently/accurately solve
the task).

We will implicitly follow view 1 in our CAPTCHA security definitions. How-
ever, we do not advocate for either view and we stress that our construction
would also work under view 2. Under this second view the class of ppt machine-
human hybrid adversaries is strictly more powerful than the class of ppt adver-
saries. Thus, one would need to make the assumption that the cryptographic

6 In the same way some computers (ASICs) are much faster at evaluating the SHA256
hash function than others. However, we expect this difference to be less extreme for
human users.

526 J. Blocki and H.-S. Zhou

primitives used in our construction (e.g., iO, OWF) are secure against machine-
human hybrids. This assumption is highly plausible7, but also non-standard.

Following view 1 we can avoid such non-standard assumptions about crypto-
graphic primitives. In particular, we assume that the behavior of the human ora-
cle H is fully described by some (unknown) ppt algorithm. We note that because
there exists a ppt algorithm specifying the behavior of H the class pptH (the
class of ppt algorithms with oracle access to H) is no more powerful than the
class ppt. Thus, we do not need to rely on non-standard cryptographic assump-
tions (e.g., iO is secure against adversaries in pptH). How can a CAPTCHA
scheme be secure if there exists some ppt algorithm that accurately solves chal-
lenges without human assistance? We will use the set Discoverable to denote
a subset containing all known turing machines and all turing machines that
mankind might plausibly discover in the near future (e.g., 10–20 years). More
specifically, DiscoverableX = {M |M is a turing machine that mankind will
build within the next X years }. The security of a CAPTCHA scheme relies
on the assumption that no ppt algorithm in DiscoverableX will be able to
accurately solve CAPTCHA puzzles for some reasonably large value of X (e.g.,
10–20 years).

Stating that no ppt algorithm A ∈ DiscoverableX breaks CAPTCHAs is a
statement about human ignorance. While the meaning of this statement is clear
at an intuitive level it is vague in a formal mathematical sense. As Rogaway
observed the same issue arises in the definition of (keyless) collision resistant
hash functions [49]. There is an efficient algorithm to find collisions, but it is
not known to mankind and the hope is that no such algorithm will be known
to mankind for a long time in the future. We will follow the same approach
taken by Rogaway [49] when making security statements about constructions
(e.g., PoH) that rely on CAPTCHAs. For example, we prove that there is an
explicit ppt blackbox reduction (blackbox-constructive form [49]) transforming
an adversary who breaks Proof of Human-work security to an adversary who
breaks CAPTCHAs.

Definition 3 (CAPTCHA Break v1). We say that a ppt adversary A who
has at most m human-work units breaks security of a CAPTCHA puzzle-system
(Setup, W, G, CH, Verify) if if for some polynomials m = m(λ), n = poly(λ) and
μ(λ) when A controls at most m human-work units, it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

pp ← Setup(1λ); ∀i ∈ [n]
(
σ∗

i ← W(pp)
)
;

∀i ∈ [n]
(
(Z∗

i , tag∗
i) ← G(pp, σ∗

i)
)
;

S ← AH(·)(pp, Z∗
1 , . . . , Z∗

n);
∀i ∈ [n]

(
bi ← maxσ∈S Verify(pp, Z∗

i , tag∗
i , σ)

)
:∑

i∈[n] bi ≥ m + 1

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1
μ(λ)

7 If a cryptographic primitives like iO or one-way functions were not secure against
machine-human hybrids then these primitives would have to be considered broken
in practice.

Designing Proof of Human-Work Puzzles 527

We say that the CAPTCHA puzzle-system is computer uncrackable for the next
X years if for any ppt adversary A ∈ DiscoverableX , A does not break security
of the CAPTCHA puzzle system.

Our second formulation of CAPTCHA security is slightly non-standard due
to the fact that the adversary is given a tag tagi along with each challenge Zi.
In particular, the value tagi allows the adversary to run Verify(pp, Zi, tagi, σ

′
i)

to test different candidate CAPTCHA solutions. While this formulation is non-
standard we argue that we would expect that any CAPTCHA that is secure
under Definition 3 can be transformed into a CAPTCHA that is secure under
Definition 4. For example, tagi might be the cryptographic hash of the solution
σi or we might set tagi = iO(

IZiσi

)
to be the indistinguishability obfuscation of

a point function IZi,σi
(x) = 1 if x =

(
Zi, σi

)
; otherwise IZi,σi

(x) = 08.
It is reasonable to believe that G could produces a tag tagi, which allows us

verify whether or not a solution σ′ is correct without revealing σi. For example,
we might set tagi = iO(

IZiσi

)
to be the indistinguishability obfuscation of a

point function IZi,σi
(x) = 1 if x =

(
Zi, σi

)
; otherwise IZi,σi

(x) = 0. In this case
Verify

(
pp, Zi, tagi, σ

′) would simply output tagi

(
Zi, σ

′).

Definition 4 (CAPTCHA Break v2). We say that a ppt adversary A units
breaks security of a CAPTCHA puzzle-system (Setup, W, G, CH, Verify) if for
some polynomials m = m(λ), n = poly(λ) and μ(λ) when A controls at most m
human-work units, it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

pp ← Setup(1λ); ∀i ∈ [n]
(
σ∗

i ← W(pp)
)
;

∀i ∈ [n]
(
(Z∗

i , tag∗
i) ← G(pp, σ∗

i)
)
;

S ← AH(·) (
pp,

(
Z∗
1 , tag∗

1

)
, . . . ,

(
Z∗

n, tag∗
n

))
;

∀i ∈ [n]
(
bi ← maxσ∈S Verify(pp, Z∗

i , tag∗
i , σ)

)
:∑

i∈[n] bi ≥ m + 1

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1
μ(λ)

We say that the CAPTCHA puzzle-system is computer uncrackable for the next
X years if for any ppt adversary A ∈ DiscoverableX A does not break security
of the CAPTCHA puzzle-system.

We will require λ to be large enough that a computer cannot reasonably find
a solution by brute force. As Von Ahn et al. [55] observed we can always increase
λ by composing CAPTCHA puzzles. Of course this will increase the amount of
time that it would take to solve a puzzle. Bursztein et al. [17] conducted a large
scale experiment on Amazon’s Mechanical Turk to evaluate human performance
on a variety of different CAPTCHAs. Based on these results we estimate that,
if we define one human work unit to be about two minutes of human effort,
it is plausible to believe that security could be amplified to the extent that

8 Indistinguishability obfuscation provides ‘best case’ obfuscation [31] so it would be
highly surprising if an adversary could use tagi to extract σi as this would immedi-
ately imply that a host of alternative cryptographic techniques (e.g., one way func-
tions, collision resistance hash functions) fail to hide σi. A recent result of Barak
et al. [4] provides evidence that evasive circuit families (e.g., point functions) can be
obfuscated.

528 J. Blocki and H.-S. Zhou

that adversary’s odds of solving the long CAPTCHA challenge correctly (and
without human assistance) is negligible (e.g., 2−100)9. For traditional CAPTCHA
applications like bot detection this would make the solution impracticable due
to the high usability costs. However, for our applications such a delay can be
acceptable (e.g., in Bitcoin the parameters are tuned so that a new block is
mined every 10 min).

While some spammers have paid human workers to solve CAPTCHAs in
bulk [44] we do not consider this an attack on our definition because human
effort was involved to find the solution. A HumanCoin miner could pay users to
solve CAPTCHAs for him, but human users would have incentive to mine their
own HumanCoins if compensation was unfair.

2.2 Universal Samplers

In [32], Hofheinz et al. introduce the notion of universal samplers. The essential
property of a universal sampler scheme is that given the sampler parameters U ,
and given any program d that generates samples from randomness, it should
be possible for any party to use the sampler parameters U and the description
of d to obtain induced samples that look like the samples that d would have
generated given uniform and independent randomness.

Definition 5. A universal sampler scheme consists of algorithms
(Setup, Sample) where

– U ← Setup(1λ) is a randomized algorithm which takes as input a security
parameter 1λ and outputs sampler parameters U .

– pd ← Sample(U, d) takes as input sampler parameters U and a circuit d of
size at most � = poly(λ), and outputs induced samples pd.

In our construction in the next section, we will use a slightly extended version
of universal sampler scheme which allows an additional input. Note that in the
basic version of universal sampler scheme in Definition 5 above, the algorithm
Sample(U, d) receives as input a program d which specifies certain distribution.
In our application the program d will be fixed ahead of time, and Sample takes
an additional input β where β is an index for specifying randomness for the pro-
gram to generate a CAPTCHA puzzle Z with tag. Thus, for the slightly extended
version of universal sampler scheme with an additional input, we will use the
9 Some CAPTCHA candidates have already been “broken” by ppt algorithms (e.g.

[16,19,43,54]). For example, [16] was able to solve reCAPTCHA with accuracy
33.34 %. There are solid guidelines about generating CAPTCHAs that are harder
for a computer to crack (e.g., see [58]). Furthermore, we stress that even apparently
“broken” CAPTCHAs may still be useful in our proof of human work context because
it is acceptable to use CAPTCHA puzzles that take a long time (e.g., 2min) for a
human to solve. By contrast, most deployed CAPTCHAs (e.g., reCAPTCHA) are
meant to be solvable in a few seconds. As long as there is some gap between human
intelligence and artificial intelligence we can use standard hardness amplification
techniques (e.g., parallel repetition) to obtain stronger CAPTCHAs [55].

Designing Proof of Human-Work Puzzles 529

notation Sample(U, d, β) instead of Sample(U, d). This allows us to provide alter-
native and flexible description for a circuit d without changing its functionality.
We note that this slightly extended version has been explored in [32], and it
is straightforward to extend Sample, without requiring a new construction or
security analysis.

The formal security definition of adaptive security for the slightly extended
universal samplers with additional inputs can be found in AppendixA. We briefly
overview the notion of adaptive security here. Intuitively, adaptive security guar-
antees that induced samples are indistinguishable from honestly generated sam-
ples to an arbitrary interactive system of adversarial and honest parties. In
a universal sampler with additional inputs, the program d is fixed, and when
an additional input β is provided, the induced sample can be computed as
pβ ← Sample(U, d, β).

We first consider an “ideal world,” where a trusted party with a fixed program
description d, on input β, simply outputs d(rβ) where rβ is independently chosen
true randomness, chosen once and for all for each given β. In other words, if F
is a truly random function, then the trusted party outputs d(F (β)). In this way,
if any party asks for samples corresponding to a specific value of β, they are all
provided with the same honestly generated value.

In the real world, however, all parties would only have access to the trusted
sampler parameters. Parties would use the sampler parameters to derive induced
samples d(rβ) for any specific inputs β. Now rβ is a pseudo random value corre-
sponding to the randomness index β. We will require that for every real-world
adversary A, there exists a simulator S that can provide simulated sampler
parameters U to the adversary such that these simulated sampler parameters
U actually induce the completely honestly generated samples d(F (β)) created
by the trusted party: in other words, that Sample(U, d, β) = d(F (β)). Note that
since honest parties are instructed to simply compute induced samples, this
ensures that honest parties in the ideal world would obtain these completely
honestly generated samples d(F (β)).

3 Proof of Human-Work Puzzles

In this section, we first define the syntax and security for proof of human-
work puzzles; then we demonstrate a construction using universal samplers and
CAPTCHAs.

3.1 Definitions

In a proof of work (PoW) puzzle, a party (i.e., prover) is allowed to prove to
a bunch of verifiers that he completed some amount of computation/work. In
general, those parities are machines. A typical PoW puzzle scheme consists of
several algorithms: setup algorithm Setup() for generating the global system
parameters and policies, puzzle instance generation algorithm G(), puzzle solu-
tion finding algorithm C(), and solution verification algorithm V(). To enable

530 J. Blocki and H.-S. Zhou

a consensus protocol, the PoW puzzle has to meet the following requirements:
(i) it has to be moderately hard to compute (for machines), and no prover can
create a proof of work in no time; (ii) it has to be easy to verify (for machines),
and all verifiers can efficiently check if a proof is valid; (iii) the difficulty needed
in order to solve the proof has to be adjustable in a linear way; and (iv) it has to
be possible to ensure that proofs of work cannot be reused multiple times, and
the proofs of work should be linked to some public information, e.g., the hash of
the block header in a consensus protocol.

Proof of human-work puzzles are very similar to PoW puzzles, except that we
intend to have the human in the loop for finding the solution. The key difference
is that the prover (problem solver) should not be machine-only. In the above
listed requirements, we therefore expect the PoH puzzle to be moderately hard
to compute for humans, and infeasible to compute for machines. On the other
hand, as in PoW, we expect the verification to be easy for machines10. The
syntax is as follows:

Definition 6 (Proof of Human-work Puzzle). A proof of human-work
puzzle-system consists of a tuple of algorithms (Setup, G, CH, V), where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is
the security parameter) and 1ω (ω is the difficulty parameter), and outputs a
system public parameter pp ← Setup(1λ, 1ω);

– G is a randomized puzzle generation algorithm that takes as input the public
parameter pp, and outputs puzzle x ← G(pp);

– CH is a solution finding algorithm (i.e., human-machine solver) that takes
as input the public parameter pp and a puzzle x, and outputs value a ←
CH(·)(pp, x) as the solution to the puzzle x. Here, H(·) denotes the human
oracle which takes intermediate human-efficient objects (such as images) as
inputs, and returns machine-efficient values as outputs.

– V is a deterministic puzzle-solution verification algorithm that takes as input
the public parameter pp and a puzzle-solution pair (x, a), and outputs bit b :=
V(pp, x, a) where b = 1 if a is a valid solution to the puzzle x, and b = 0
otherwise.

Following notation of Miller et al. [42] we will let ζ(m,ω) .= 1 − (1 − 2−ω)m.
Intuitively, ζ(m,ω) denotes the probability of finding a valid solution with m
queries to the human-oracle.

Definition 7 (Honest Human Solvability). A PoH puzzle system
(Setup, G, CH, V) is honest human solvable if for every polynomial m = m(λ),
and for any honest human-machine solver CH(·) who controls m human-work
units, it holds that

Pr
[

pp ← Setup(1λ, 1ω); x∗ ← G(pp);
a∗ ← CH(·)(pp, x∗) : V(pp, x∗, a∗) = 1

]
≥ ζ(m,ω) − negl(λ)

10 We remark that, it might also be interesting to consider the variant in which verifi-
cation is easy for human but not for machine-verifiers.

Designing Proof of Human-Work Puzzles 531

Definition 8 (Adversarial Human Unsolvability). We say that a ppt
algorithm B breaks security of the a PoH puzzle system (Setup, G, CH, V) if for
some polynomials m = m(λ) and μ(λ) when B controls at most m human-work
units, it holds that

Pr
[

pp ← Setup(1λ, 1ω); x∗ ← G(pp);
a∗ ← BH(·) (pp, x∗) : V(pp, x∗, a∗) = 1

]
≥ζ(m + 1, ω) +

1
μ(λ)

If no ppt human-machine adversary BH(·) ∈ DiscoverableX breaks security we
say that the PoH puzzle system is adversarial human unsolvable for the next X
years.

Remark 2. We remark that the above definition can be strengthened by provid-
ing the adversarial B additional access to a polynomial number of (xi, ai) pairs,
where xi ← G(pp) and V(pp, xi, ai) = 1. The definition can be further strength-
ened further by providing the adversarial B multiple puzzle instances x∗

1, . . . , x
∗
k,

and asking B to output a valid a∗
j for any j ∈ [k]. Our construction in next

section can achieve these strengthened notions. For simplicity, we focus on the
above simplified notion in this paper.

3.2 Construction

In this subsection, we show how to construct PoH puzzles for cryptocurrency. In
Bitcoin each PoW puzzle instance is specified by the public ledger x. A motivated
miner (i.e., the PoW prover) will produce a PoW by repeatedly querying a
random oracle RO (e.g., the SHA256 hash function) to sample uniformly random
elements in an attempt to produce a “small” output. More concretely, the miner
computes random elements yi = RO(x, si) for different strings si’s. If there exist
i so that yi < Tω, then the corresponding si can be viewed as the PoW solution.
Given a random oracle RO : {0, 1}∗ → {0, 1}n we will use the notation Tω

.= 2n−ω.
Intuitively, this ensures that RO(x, si) < Tω with probability 2−ω.

To have human in the loop, we need to first sample CAPTCHA instances for
human solvers. Those instances are not in uniform distribution, and it is unclear
if we can use a random oracle RO to generate such instances. We here use a
cryptographic tool called “universal sampler” recently developed by Hofheinz
et al. [32] to generate such CAPTCHA instances. Universal sampler can be
viewed as an extended version of RO, which can generate elements in any effi-
ciently samplable distributions. More concretely, we fix d to be a circuit for
computing the CAPTCHA generation function capt.G. Thus, d(r) generates a
CAPTCHA puzzle Zr and a tag tagr from randomness r. Now, the miner begins
by computing (Zi, tagi) = Sample(U, d, β = (x, si)); then the miner solves Zi via
human effort to get the corresponding CAPTCHA solution σi; at this moment,
we can adapt the strategy in the original PoW by computing yi = RO(x, si, σi)
and if yi < Tω and if the CAPTCHA solution σi is correct, then the corre-
sponding pair (si, σi) can be viewed as the PoH solution. We can verify that
the solution is correct by re-sampling (Zi, tagi) ← Sample(U, d, β = (x, si)) and
checking that Verify(Zi, tagi, σi) = 1 and that RO(x, si, σi) < Tω.

532 J. Blocki and H.-S. Zhou

Construction Details. In our proof of human-work puzzle construction, we use
a universal sampler scheme uni = uni.{Setup, Sample}, a CAPTCHA scheme
capt = capt.{Setup, W, G, CH, Verify}, and a hash function G. We will treat G
as a random oracle in our analysis. The constructed PoH puzzle scheme consists
of algorithms poh.{Setup, G, CH, V}. Note that H denotes a human oracle.

– The setup algorithm pp ← poh.Setup(1λ, 1ω): Compute p̃p ←
capt.Setup(1λ); Compute U ← uni.Setup(1λ); Define a program d as follows:
On input randomness r = (r1, r2), compute σ := capt.W(p̃p; r1), (Z, tag) :=
capt.G(p̃p, σ; r2), and output (Z, tag). Set pp :=

(
U, d, p̃p, T = Tω,param

)

where param denotes the instructions of using the system.
– The puzzle generation algorithm x ← poh.G(pp): Parse pp into

(U, d, p̃p, T,param); Based on the description of param, sample x.
– The solution function a ← poh.CH(pp, x): Upon receiving puzzle instance x,

parse pp into (U, d, p̃p, T,param); Randomly choose s ← {0, 1}λ; Compute
CAPTCHA puzzle instance (Z, tag) ← uni.Sample(U, d, β = (x, s)) ; Use the
human oracle H to find a solution to CAPTCHA puzzle instance Z, i.e.,
σ ← capt.CH(p̃p, Z); If G(x, s, σ) < T , then set a := (s, σ). Otherwise set
a := ⊥.

– The puzzle verification algorithm b := poh.V(pp, x, a): Parse a into (s, σ);
Parse pp into (U, d, p̃p, T,param); Compute (Z, tag) ← uni.Sample(U, d, β =
(x, s)); If capt.Verify(p̃p, Z, tag, σ) = 1 and G(x, s, σ) < T , then set b := 1.
Otherwise set b := 0.

It is easy to verify that the PoH scheme is honest human solvable if the under-
lying universal sampler is correct and the CAPTCHA scheme is honest-human
solvable. Next we state a theorem for the security of our PoH scheme, and the
proof can be found in the full version [12]. In our proof we give an explicit
ppt reduction R from CAPTCHA to PoH security. Intuitively, this means that
if mankind finds a ppt algorithm B ∈ DiscoverableX attacking PoH security
then mankind will quickly find a ppt algorithm A breaking CAPTCHA security.
We take this to mean that if B ∈ DiscoverableX then A ∈ DiscoverableX+ε,
where ε is the time necessary to apply a known, efficient blackbox reduction11.

11 In this (informal) line of reasoning we implicitly assume if there is an ppt algo-
rithm breaking PoH is discovered then the reduction R will be quickly imple-
mented by someone because it is publicly known and leads to a very use-
ful result (breaking CAPTCHAs). We stress that we are not claiming that
R(DiscoverableX) ⊂ DiscoverableX+ε for every known, explicit reduction R so
that the set DiscoverableX+ε contains the result of applying every explicit, known
reduction to every machine in the set DiscoverableX . If this was the case then we
could claim that (at minimum) the set DiscoverableX contains all strings of length
X/ε since the reductions R1 = “append 1” and R0 = “append 0” are explicit, known
reductions. In our case we are assuming that the known,explicit reduction R from
CAPTCHAs to PoHs would be implemented because it is known that the reduction
leads to a useful result when we have an algorithm to break PoH security (breaking
CAPTCHAs). By contrast, the reduction “append 1” is unlikely to lead to useful
results when applied to most Turing Machines.

Designing Proof of Human-Work Puzzles 533

Thus, our poh construction is essentially as secure as the underlying construc-
tion. capt is a computer uncrackable CAPTCHA for the next X + ε years
(Definition 4), then the above proof of human-work scheme poh is adversarial
human unsolvable for the next X years. We use ε to denote the time necessary
(e.g., 1 day) to implement the reduction and build the resulting ppt CAPTCHA
solver.

Theorem 1. If uni is an adaptively secure universal sampler then given any
ppt algorithm B that breaks poh security (Definition 8) there is an explicit ppt
blackbox reduction producing a ppt algorithm A that breaks CAPTCHA security
(Definition 4).

Proof (idea). The security of our PoH relies on the security of underlying building
blocks, the universal sampler scheme uni, and the CAPTCHA scheme capt.
We start from the real security game. Based on the security of the universal
sampler scheme uni, we can modify the real security game into a hybrid world
where CAPTCHA puzzle instances are generated independently and based on
uniform randomness. Then we can use the security of capt to argue about the
security of PoH. That is, we can construct a capt attacker Acapt based on
a PoH attacker Apoh. The capt attacker Acapt can simulate an internal copy
of Apoh, and embed his challenge into a simulated hybrid for Apoh. If Apoh

wins with more than specified probability (i.e., ζ(m + 1, ω)) plus non-negligible
probability, then Acapt can also win the computer-unbreakable game with non-
negligible probability.

4 Application 1: HumanCoin

In this section we outline how a new cryptocurrency called HumanCoin could be
built using Proofs of Human-work. At a high level HumanCoin closely follows
the Bitcoin protocol, except that we use PoH puzzles to extend the blockchain
instead of PoW puzzles. We will not attempt to describe HumanCoin in complete
detail. Instead we will focus on the key modifications that would need to be made
to an existing cryptocurrency like Bitcoin to use Proof of Human work puzzles.
In our discussion we will use lowercase bitcoin (resp. humancoin) to denote the
base unit of currency in the Bitcoin (resp. HumanCoin) protocol.

4.1 Bitcoin Background

We begin by highlighting several of the key features of Bitcoin. Our overview
follows the systemization of knowledge paper by Bonneau et al. [14]. However,
our discussion of Bitcoin is overly simplified and this choice is intentional. For
example, we will completely ignore the use of Merkle Trees [41] in Bitcoin to
compress the blockchain even though it is quite useful in practice. We make this
choice so that we can focus on the key differences of HumanCoin (the use of
Merkle Trees [41] in HumanCoin and Bitcoin would be identical). We do include
additional discussion of Bitcoin in the full version, but even this discussion is

534 J. Blocki and H.-S. Zhou

not intended to be complete. We refer interested readers to the excellent lectures
by Narayanan et al. [46] for more details about Bitcoin or the original paper
published under the pseudonym Nakamoto [45].

Blockchain. In Bitcoin all transactions (e.g., “Alice sends Bob 50 bitcoins”) are
published on a public ledger. This public ledger is stored on a cryptographic data
structure called a blockchain b = B0, . . . , Bt. A blockchain b is valid if and only if
all of the blocks Bi (i ≤ t) are valid and an individual block Bi = (txi, si, hi−1) is
valid if and only if three key conditions are satisfied. First, all of the transactions
recorded in the transcript txi must be valid (e.g., each transaction is signed by the
sender and the spender has sufficient funds). Second, the block Bi must contain
the cryptographic hash hi−1 = hash (Bi−1) of the previous block Bi−1

12. Finally,
the block Bi should contain a nonce si which ensures that cryptographic hash
hash (Bi) begins with at least ω leading zeros, where ω is a hardness parameter
that we will discuss later. Finding such a nonce s constitutes a proof of work
in the Hashcash [3] puzzle system. The first property ensures that users cannot
spend money they don’t have and that they cannot spend someone else’s money.
The second property ensures that it is impossible to tamper with blocks Bi

in the middle of the blockchain without creating an entirely new blockchain
b′ = B0, . . . , Bi−1, B

′
i, B

′
i+1, . . . , B

′
t. Finally, the third property ensures that it is

moderately difficult to add new blocks to a blockchain. To incentivize miners to
help validate transactions (i.e. extend the blockchain by finding a valid nonce s)
the miner is allowed to add a special transaction (e.g., “I create 25 new bitcoins
and give them to myself”) to the new block as a reward.

Distributed Consensus Protocol. Bitcoin’s distributed consensus protocol
is simple, yet elegant. An agent should accept a transaction if and only if it is
recorded on a block Bi of a valid blockchain b = B0, . . . , Bt and b is the longest
valid that the agent has seen and i ≤ t − 6. Unless a miner controls at least
25% of the hash power in the network the rational mining strategy is always to
extend the longest blockchain because nobody will accept the Bitcoins they try
to mine in a shorter blockchain (e.g., the special transaction in which a miner
claims 25 bitcoins’ would only be recorded on a shorter blockchain which nobody
accepts) [27]. Assuming that the network has high synchronicity [29] and that
a malicious user controls at most 49% of the computational mining power he
will never be able to tamper with any of the transactions in a block Bi from the
middle of the blockchain because he would need to eventually produce a new
blockchain b′ = B0, . . . , Bi−1, B

′
i, B

′
i+1, . . . , B

′
t that is at least as long as the true

blockchain b and he will fail to accomplish this goal with high probability [45].

4.2 HumanCoin

Similar to Bitcoin all HumanCoin transactions (e.g., “Alice sends Bob 50 human-
coins”) are recorded inside a blockchain b = B0, . . . , Bt, where each block

12 Bitcoin uses the cryptographic hash function hash = SHA256. The function hash is
typically treated as a random oracle in security analysis of Bitcoin.

Designing Proof of Human-Work Puzzles 535

Bi = (txi, ai, hi−1) contains three components: a list of transactions txi, a hash
hi−1 = hash(Bi−1) of the previous block, and a Proof of Human-work which is
encoded by ai. As before all of the transactions in txi must be valid and the block
must contain the hash hi−1 = hash(Bi−1) of the previous block. We additionally
require that the PoH verifier accepts the Proof of Human-Work solution ai. More
formally, suppose that we are given a PoH puzzle system (Setup, G, CH, V) and
that we have already run Setup

(
1λ, 1ω

)
to obtain public parameters pp which

are available to every miner. A valid block Bi must contain a value ai such that
the public verifier V (pp, xi, ai) outputs 1, where xi = G (pp; r = hash(txi, hi−1)).
Given a valid blockchain b = B0, . . . , Bt a miner can earn HumanCoins by find-
ing a valid block Bt+1 = (txt+1, at+1, xt+1, ht) extending b. To find such a block
the human-computer miner would first set r = hash(txt+1, ht) and then sample
x ← G (pp; r). Finally, the human-computer miner can run CH (pp, x) to obtain
a potential solution a. If a = ⊥ then the miner will need to try again. Otherwise,
the miner has found a valid proof of human-work and he can produce a valid
new block Bt+1 = (txt+1, a, ht) by adding inserting the PoH solution a into the
block Bt+1. As before the miner is allowed to insert a special transaction into
the new block (e.g., “I create 25 humancoins and give them to myself”) as a
reward for extending the blockchain.

Parameter Selection. In Bitcoin ω is a public parameter is tuned to ensure
that, on average, miners will add one new block to the blockchain every 10 min [46]
— on average we need 2ω hash evaluations to create one new block. The Bitcoin
protocol would most likely work just fine with a shorter delay (e.g., 5 min) or a
slightly longer delay (e.g., 20 min) between consecutive blocks — there is nothing
magical about the specific target value of 10 min. However, it is clear that there
needs to be some delay to promote stability. If multiple miners find a new block
at the same time then we could end up with competing blockchains resulting in
temporary confusion. Note that if the value of ω remains fixed then the average
time to create one new block would begin to decrease as more miners join Bitcoin,
or as existing miners upgrade their computational resources. Thus, the value of ω
must be adjusted periodically. In Bitcoin the value of ω is adjusted every 2, 016
blocks, which works out to two weeks on average (2 weeks = 2016×10 min), using
the formula ω = ωold − log

(
telapsed

2016×10 min

)
, where telapsed denotes the time span

that it actually took to generate the last 2, 016 blocks [46].
In HumanCoin we adjust ω in exactly the same way. Note that the PoH

hardness parameter Tω = 2n−ω in our PoH construction is a public parameter
pp and can easily be modified as it is not embedded into any of the obfuscated
programs. In HumanCoin we will need to select an initial value of ω that is much
smaller than in Bitcoin if we want ensure that new block are discovered every
10 min. This is because computers can evaluate a hash function hash much faster
than a human can solve a long CAPTCHA puzzle. However, we could still use
the same basic formula to tune the hardness parameter ω of our proof of work
puzzles in the event that many miners join/leave.

536 J. Blocki and H.-S. Zhou

5 Application 2: Password Protection

An adversary who breaches an authentication server is able to mount an auto-
mated brute-force attack by comparing the cryptographic hash of each user’s
password with the cryptographic hashes of likely password guesses. These offline
attacks have become increasingly prevalent and dangerous as password cracking
resources has improved. In particular, the cost of computing a hash function H like
SHA256 or MD5 on an Application Specific Integrated Circuit (ASIC) is orders
of magnitude smaller than the cost of computing H on traditional hardware [21,
46]. Similarly, data from previous breaches allow adversaries to improve their
guessing strategies. Recent security breaches (e.g., Ashley Madison, LastPass,
RockYou, LinkedIn and eBay to name a few13), which have affected millions of
users, highlight the importance of this problem.

Canneti et al. [18] had a clever idea to deter an offline attacker that they
called Human Only Solvable Puzzles. They proposed filling a hard drive with
a dataset of unsolved CAPTCHA puzzles. When a user authenticates he will
be challenged with a pseudorandom CAPTCHA puzzle from the dataset, and
the server will append the solution to the user’s password before computing
the hash value. The choice of the pseudorandom CAPTCHA puzzle becomes
deterministic once the user’s password and username are fixed. Thus, if the user
types in the same password he will receive the exact same CAPTCHA puzzle as
a challenge. If the underlying CAPTCHA system is human usable, then the user
will always be able to authenticate successfully provided that he can remember
his password. If an offline advesary wants to verify a password guess he will
need to find and solve the corresponding CAPTCHA puzzle. The key point is
that each time the adversary tries a new guess he will need to solve a different
CAPTCHA challenge.

Unfortunately, the Human Only Solvable Puzzles solution of [18] has one
critical drawback. There are a finite number of CAPTCHAs on the hard drive,
and the defense will break down once the adversary manages to solve all (or
most) of them. Blocki et al. [9] estimated that it would cost about $106 to solve
all of the CAPTCHAs on an 8 TB hard drive. While this is certainly an expensive
start-up cost it may not be sufficient to deter the adversary because these costs
would amortize over all user accounts. Many password breaches affect millions
of users, and each cracked password has significant value on the black market
(e.g., $4–$30). Blocki et al. [9] introduced their own scheme called GOTCHA
based on inkblot images, but their protocol had higher usability costs and was
based on newer untested AI assumptions.

In this section we introduce a provably secure password authentication
scheme in the Random Oracle model using CAPTCHAs and program obfusca-
tion. Unlike Blocki et al. [9] our solution can be based on standard CAPTCHA

13 See http://www.privacyrights.org/data-breach/ (Retrieved 9/1/2015).

http://www.privacyrights.org/data-breach/

Designing Proof of Human-Work Puzzles 537

assumptions. Unlike Canneti et al. [18] our solution is not vulnerable to pre-
computation attacks14.

5.1 Password Authentication Scheme

We first formalize the notion of a password authentication scheme. Definition 9
formalizes the account creation and authentication algorithms from the perspec-
tive of an authentication server. We note that the server is allowed to interact
with the human user H during the account creation and authentication proto-
cols.

Definition 9. A password authentication scheme consists of a tuple of
algorithms (Setup, CreateAccountH, AuthenticateH) and a random oracle G,
where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is the
security parameter) and outputs a system public parameter pp ← Setup(1λ);

– CreateAccountH is an account creation algorithm that takes as input the pub-
lic parameter pp, a username u and a password pwd and outputs a tuple (h, s).
Here, s is typically a random bit string (salt) and h is a hash value produced
by the random oracle. We note that CreateAccountH is a human-machine
algorithm and thus the hash value h may include the solution to CAPTCHAs
that the human solves as well as the password pwd and salt s;

– AuthenticateH is the algorithm that is invoked when a user wants to authen-
ticate. The algorithm takes as input the public parameter pp, a username u,
a password pwd, a hash h and a salt value s and outputs a bit b ∈ {0, 1} indi-
cating whether or not the authentication attempt was successful. We note that
AuthenticateH is a human-machine algorithm and thus the human H may
be asked to solve CAPTCHAs as part of the authentication procedure.

Our next definition says what it means for a password authentication scheme
to be costly to crack. The game mimics an offline adversary who has breached
the authentication server and stolen the record (u, h, s) indicating that user u
has an account with salt value s and the salted hash of the user’s password needs
to match h. In our definition we let P denote a distribution over the passwords
{pwd1, . . . , pwdn} that the user u might select and let pi = PrP [pwdi] denote the
probability that the user selects password pwdi. We assume that pi and pwdi

are known to the adversary for all i and for convenience we assume that the
passwords are ordered such that p1 ≥ p2 ≥ . . . ≥ pn. Informally, our definition
states that an adversary with B units of human-work will succeed in cracking
the user’s password with probability at most p1 + . . . + pB + negl(λ).

Definition 10 (Costly to Crack). We say a ppt adversary A breaks
security of a password authentication scheme {Setup, CreateAccountH,

14 Of course the main downside to our approach is the dependence on indistinguisha-
bility obfuscation, which does not have practical solutions at this time.

538 J. Blocki and H.-S. Zhou

AuthenticateH, G} if for some polynomials B = B(λ) and μ(λ) and user
u, whenever A has B human-work units it holds that

Pr

⎡

⎢
⎢
⎣

pp ← Setup(1λ); pwd ← P;
(h, s) ← CreateAccountH(

pp, u, pwd
)
;

pwd′ ← AH(·)(pp, h, s) :
AuthenticateH(

pp, u, pwd′, h, s
)

= 1

⎤

⎥
⎥
⎦ ≥ p1 + . . . + pB +

1
μ(λ)

We say that the password authentication scheme is costly to crack for the next X
years if for any ppt adversary A ∈ DiscoverableX A does not break security.
We remark that we do not require the adversary’s success probability to be
negligibly small. Indeed, if the user selects passwords from a distribution with
low entropy (and many users do [13]) then the adversary may have a good
success rate. Thus, the problem is unavoidable as long as users are allowed to
select low-entropy passwords15. We do not focus on helping users to select strong
passwords [10,15], although this is indeed an important direction of research.
Our goal is to provide the best possible protection for the passwords that users
actually select.

The next definition quantifies human usability. Informally, the password
authentication scheme is usable if an honest human user will always be able
to authenticate if he remembers his password. We stress that our definition does
not say anything about how easy it will be to remember the password. While
this is certainly an important consideration it is orthogonal to our work. We are
not focused on how to get users to choose stronger passwords, but rather how to
more effectively protect the passwords that users actually choose. Our definition
merely says that an honest user won’t be locked out of his account as long as he
remembers his password (e.g., because he cannot solve the CAPTCHAs).

Definition 11 (Human Usable). We say that a password authentication
scheme {Setup, CreateAccountH, AuthenticateH, G} is human usable if for
every human user H who controls 1 human-work unit during authentication and
1 human work unit during account creation, it holds that

Pr

⎡

⎣
pp ← Setup(1λ); pwd ← P;
(h, s) ← CreateAccountH(

pp, u, pwd
)

:
AuthenticateH(

pp, u, pwd, h, s
)

= 1

⎤

⎦ ≥ 1 − negl(λ)

5.2 Construction

Construction Details. In our construction we use a universal sam-
pler scheme uni = uni.{Setup, Sample}, a CAPTCHA scheme capt =
capt.{Setup, W, G, CH, Verify}, and a hash function G. We will treat G as a ran-
dom oracle in our analysis. The constructed password authentication scheme con-
sists of algorithms Password.{Setup, CreateAccountH, Authenticate}. Note
that H denotes a human oracle.
15 In addition to their high usability costs [28], policies aimed at forcing users to chose

stronger passwords (e.g., requiring numbers and capital letters) can have the opposite
affect on password strength [11,37].

Designing Proof of Human-Work Puzzles 539

– The setup algorithm pp ← Password.Setup(1λ): Compute p̃p ← capt.
Setup(1λ); Compute U ← uni.Setup(1λ); Define a program d as follows:
On input randomness r = (r1, r2), compute σ := capt.W(p̃p; r1), (Z, tag) :=
capt.G(p̃p, σ; r2), and output Z. Set pp :=

(
U, d, p̃p,param

)
where param

denotes the instructions of using the system.
– The account creation algorithm (h, s) ← Password.CreateAccountH

(pp, u, pwd): Parse pp into (U, d, p̃p,param); randomly choose s ← {0, 1}λ.
Set β = (u, pwd, s) and compute CAPTCHA puzzle instance Z ←
uni.Sample(U, d, β = (u, pwd, s)); Use the human oracle H to find a solu-
tion to CAPTCHA puzzle instance Z, i.e., σ ← capt.CH(p̃p, Z); Compute
h ← G(pwd|σ|s) and output (h, s).

– The authentication algorithm b ← Password.AuthenticateH(pp, u, pwd,
h, s): Parse pp into (U, d, p̃p,param), set β = (u, pwd, s) and compute
CAPTCHA puzzle instance Z ← uni.Sample(U, d, β); Use the human oracle H
to find a solution to CAPTCHA puzzle instance Z, i.e., σ ← capt.CH(p̃p, Z);
Compute h′ ← G(pwd|σ|s). If h′ = h then output b = 1; otherwise output 0.

It is easy to verify that Password is human usable if the underlying CAPTCHA
scheme capt is honest human solvable. At an philosophical level we can
interpret Theorem 2, our main technical result in this section, to say that
the above password authentication scheme Password.{Setup, CreateAccountH,
AuthenticateH} is costly to crack for the next X years as long as the under-
lying CAPTCHA scheme is computer uncrackable for the next X + ε years
(Definition 10). Here, ε denotes the time it takes to implement an explicit (black-
box) ppt reduction from capt to the password scheme (e.g., one day). We stress
that we only need to assume that the underling CAPTCHA scheme is computer
uncrackable in the more traditional sense of Definition 3 (e.g., the adversary is only
given the puzzles Z1, . . . , Zn and not the associated verification tags).

Theorem 2. If uni is an adaptively secure universal sampler then given a ppt
algorithm B that breaks security of our password authentication scheme there is a
ppt, blackbox reduction which produces a ppt algorithm A to break CAPTCHA
security (Definition 3).

Proof (Idea). At a high level we show that we can construct an adversary that
breaks CAPTCHAs (under Definition 3) from an adversary that breaks the
password authentication scheme. To do this we embed challenge CAPTCHAs
Z1, . . . , Zn inside the UniversalSampler uni (we can do this by the security of
the Universal Sampler scheme). Intuitively, in order to check that a password
guess pwdi is correct the adversary will need to query the random oracle G
with the value βi = (pwdi|σi|u), where σi is the correct solution to CAPTCHA
Zi. If the adversary queries G with B + 1 unique solutions then we can win
the CAPTCHA challenge (Definition 3) by simply outputting these B + 1 solu-
tions. If the adversary queries G with at most B unique solutions then we can
show that his success rate is at most p1 + . . . + pB + negl(λ). A formal proof of
Theorem 2 can be found in the full version [12].

540 J. Blocki and H.-S. Zhou

Discussion. We believe that the construction of our secure password authen-
tication scheme might lead to many other useful applications. For example, the
scheme might allow us to use human memorable (i.e., lower entropy) secrets to
secure highly confidential data like secret keys. Let pwdi be the user’s password
and let σi denote the solution to the corresponding CAPTCHA challenge. The
random oracle value Ri = G

(
pwdi, σi, s, 1|i) is completely uncorrelated with

any information that the adversary can obtain without discovering the user’s
password. The random values R1, R2, . . . could be used as a one-time pad to
efficiently encrypt/decrypt information on a hard drive or to (re)derive private
keys for a signature scheme.

We also note that our authentication scheme could potentially be modi-
fied to make the proof of human work safely exportable and that the amount
of human work during authentication can easily be tuned. For example, sup-
pose that Bob wants to protect his passwords, but that he is too busy to solve
CAPTCHAs. During authentication, after Bob enters his password and receives
the CAPTCHA challenge, Bob might like to pay other human(s) to solve the
CAPTCHA challenge for him. However, he wants to make sure that his password
is not exposed if these contracted workers are malicious. For example, we might
replace the hash of the password with an obfuscation of two program PK,pwd

and GK . Here, GK(x, pwd) generates a CAPTCHA puzzle Z using randomness
(r1, r2) = PRFK(x, pwd) in the procedures capt.W and capt.G respectively.
PK,pwd(pwd′, σ, x) outputs 1 if and only if pwd′ = pwd and σ is the correct solu-
tion to the puzzle Z output by GK(x, pwd). During authentication we can obtain
the puzzle Z by running GK(x, pwd′) with a uniformly random string x ∈ {0, 1}λ

which should be discarded immediately after the authentication session finishes.
As long as Bob keeps the value x secret he can safely share the puzzle Z with
other users. However, this modified authentication protocol is merely a heuristic
as we do not have any formal security proof that it is hard for a computer to
solve CAPTCHA puzzles generated by GK when given the obfuscated source
code iO(GK).

As another application we could use the same general framework as a way
to detect bots without interaction! Suppose that we rename the algorithms
CreateAccountH and AuthenticateH to algorithms GenerateVerified
MessageH and VerifyMessageH. The algorithms have essentially the same func-
tionality except for a few minor modifications: 1) the password field pwd is
renamed to denote a message m that a user Alice wishes to send to Bob, 2) we
replace the username u with a pair (u1, u2) where u1 denotes the sender and u2

denotes the intended receiver, and we fix the salt value s = G(u1, u2,m) for a
given message m that a user u1 wishes to send to u2. To send the message m to
Bob Alice would first execute GenerateVerifiedMessageH(pp, (Alice,Bob),m)
and solve the corresponding CAPTCHA to obtain a tuple (h, s). Now Alice sends
the tuple (Alice,Bob,m, h, s) to Bob. At this point Alice is finished with the pro-
tocol. Bob runs VerifyMessageH(

pp, (Alice,Bob),m, h, s
)

and solves the corre-
sponding CAPTCHA to obtain a bit b. If b = 1 then Bob accepts that a human

Designing Proof of Human-Work Puzzles 541

(possibly Alice) spent time and energy to send the him the message m16. If b = 0
then Bob may dismiss the message as potentially being produced by a bot.

6 Future Challenges

While we believe that Proofs of Human Work could have many benefits, we
see three primary challenges for future research. First, because our construc-
tion of PoH puzzles is based on iO HumanCoin is not practical without a large
breakthrough in the design of practical iO schemes. Could we design efficient
targeted obfuscation schemes for specific programs like our PoH algorithms?
Second, because our PoH puzzles rely on the assumption that some underlying
AI problem is hard it is possible that a cryptocurrency like HumanCoin might
have a shorter shelf life (e.g., if it takes 15 years for AI researchers to break
the underlying CAPTCHA then HumanCoin would expire in at most 15 years).
Would it possible for HumanCoin participants to reach a consensus to change the
underlying CAPTCHA in the event of an AI breakthrough? Finally, our Proof
of Human Work construction, and by extension HumanCoin, requires an initial
trusted setup phase for the Proof of Human Work construction. If the Proof of
Human Work system is generated by a malicious party then that party might be
able to insert a trapdoor which would allow him to mine HumanCoins without
any human effort. We note that this concern is not unique to HumanCoin. Other
cryptocurrencies like Zerocash [5] also require an initial trusted setup phase17.
Ben-Sasson et al. [6] proposed to run this trusted setup phase using secure mul-
tiparty computation. As long as at least one of the parties in this computation
are honest it would be impossible for a malicious adversary to insert a backdoor.
Similar techniques could also be used to minimize risks during the HumanCoin
setup phase.

In addition to cryptocurrency we also showed that our PoH techniques could
be applied to protect passwords and to detect bots without interaction. What
other applications are possible?

Acknowledgments. The authors thank paper shepherd Peter Gaži for his very con-
structive feedback which helped us to improve the quality of the paper. In particular,
we are thankful for his suggestions about formalizing security statements involving
hard AI problems.

The authors also thank Andrew Miller, and the PC of ITCS 2016 and TCC 2016B
for their helpful comments.

16 If Bob wanted to additionally verify that Alice was the human that sent the message
Alice and Bob would need to use other cryptographic tools like digital signatures.

17 Arguably, even Bitcoin does require some trust assumptions during setup. For exam-
ple, we need to trust that the cryptographic hash function h = SHA256, which is
modeled as a random oracle in the Bitcoin protocol, does not have any secret back-
doors. A malicious miner with a secret backdoor could easily reverse old transactions.

542 J. Blocki and H.-S. Zhou

A Universal Samplers: Security Definition

Definition 12. Consider efficient algorithms (Setup, Sample) where U ←
SetupRO(1λ), d is the fixed program supporting additional input, and pβ ←
SampleRO(U, d, β). We say (Setup, Sample) is an adaptively-secure universal
sampler scheme for a circuit d, if there exist efficient interactive Turing Machines
SimSetup, SimRO such that for every efficient admissible adversary A, there
exists a negligible function negl() such that the following two conditions hold:

Pr[Real(1λ) = 1] − Pr[Ideal(1λ) = 1] = negl() and Pr[Ideal(1λ) = aborts] < negl()

where admissible adversaries, the experiments Real and Ideal and the notion
of the Ideal experiment aborting, are described below

– An admissible adversary A is an efficient interactive Turing Machine that
outputs one bit, with the following input/output behavior:
• A initially takes input security parameter 1λ and sampler parameters U , as

well as the program d.
• A can send a message (RO, x) corresponding to a random oracle query. In

response, A expects to receive the output of the random oracle on input x.
• A can send a message (sample, β). The adversary does not expect any

response to this message. Instead, upon sending this message, A is required
to honestly compute pβ = Sample(U, d, β), making use of any additional RO
queries, and A appends (β, pβ) to an auxiliary tape.
Remark. Intuitively, (sample, β) messages correspond to an honest party
seeking a sample generated by the fixed program d on input β. Recall that
A is meant to internalize the behavior of honest parties.

– The experiment Real(1λ) is as follows:
• Throughout this experiment, a random oracle RO is implemented by assign-

ing random outputs to each unique query made to RO.
• U ← SetupRO(1λ).
• A(1λ, U, d) is executed; when A sends every message of the form (RO, x),

it receives the response RO(x).
• The output of the experiment is the final output of the execution of A (which

is a bit b ∈ {0, 1}).
– The experiment Ideal(1λ) is as follows:

• Throughout this experiment, a Samples Oracle O is implemented as follows:
On input β, O outputs d(F (β)), where F is a truly random function.

• (U, τ) ← SimSetup(1λ). Here, SimSetup can make arbitrary queries to the
Samples Oracle O.

• A(1λ, U, d) and SimRO(τ) begin simultaneous execution. Messages for A or
SimRO are handled as:
1. Whenever A sends a message of the form (RO, x), this is forwarded to

SimRO, which produces a response to be sent back to A.

Designing Proof of Human-Work Puzzles 543

2. SimRO can make any number of queries to the Samples Oracle O.
3. In addition, after A sends messages of the form (sample, β), the auxil-

iary tape of A is examined until A adds entries of the form (β, pβ) to it.
At this point, if pβ 	= d(F (β)), the experiment aborts and we say that an
“Honest Sample Violation” has occurred. Note that this is the only way
that the experiment Ideal can abort. In this case, if the adversary itself
“aborts”, we consider this to be an output of zero by the adversary, not
an abort of the experiment itself.

• The output of the experiment is the final output of the execution of A (which
is a bit b ∈ {0, 1}).

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science, July 2005

3. Back, A.: Hashcash – a denial of service counter-measure (2002). http://hashcash.
org/papers/hashcash.pdf

4. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014)

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M., Zerocash: decentralized anonymous payments from Bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press,
May 2014

6. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304. IEEE Computer Society Press, May 2015

7. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

8. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending Bitcoins
proof of work via proof of stake. In: Proceedings of the ACM SIGMETRICS 2014
Workshop on Economics of Networked Systems, NetEcon (2014)

9. Blocki, J., Blum, M., Datta, A.: GOTCHA password hackers! In: AISec 2013,
Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp.
25–34 (2013). http://www.cs.cmu.edu/jblocki/papers/aisec2013-fullversion.pdf

10. Blocki, J., Komanduri, S., Cranor, L.F., Datta, A.: Spaced repetition and mnemon-
ics enable recall of multiple strong passwords. In: NDSS 2015. The Internet Society,
February 2015

11. Blocki, J., Komanduri, S., Procaccia, A., Sheffet, O.: Optimizing password compo-
sition policies. In: Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, pp. 105–122. ACM (2013)

12. Blocki, J., Zhou, H.-S.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: IACR Cryptology ePrint Archive 2016/145 (2016). http://eprint.
iacr.org/2016/145

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
http://www.cs.cmu.edu/jblocki/papers/aisec2013-fullversion.pdf
http://eprint.iacr.org/2016/145
http://eprint.iacr.org/2016/145

544 J. Blocki and H.-S. Zhou

13. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, pp. 538–552. IEEE
Computer Society Press, May 2012

14. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy, pp. 104–121. IEEE Computer Society
Press, May 2015

15. Bonneau, J., Schechter, S.: Toward reliable storage of 56-bit keys in human memory.
In: Proceedings of the 23rd USENIX Security Symposium, August 2014

16. Bursztein, E., Aigrain, J., Moscicki, A., Mitchell, J.C.: The end is nigh: generic
solving of text-based captchas. In: 8th USENIX Workshop on Offensive Technolo-
gies (WOOT 2014), San Diego, CA, August 2014. USENIX Association (2014)

17. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? A large scale evaluation. In: 2010 IEEE Sympo-
sium on Security and Privacy, pp. 399–413. IEEE Computer Society Press, May
2010

18. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006)

19. Chellapilla, K., Simard, P.Y.: Using machine learning to break visual
human interaction proofs (HIPs). In: Neural Information Processing Systems
(NIPS), pp. 265–272 (2004). https://papers.nips.cc/paper/2571-using-machine-
learning-to-break-visual-human-interaction-proofs-hips.pdf

20. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

21. Dwork, C., Goldberg, A.V., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003)

22. Dwork, C., Halpern, J.Y., Waarts, O.: Performing work efficiently in the presence
of faults. SIAM J. Comput. 27(5), 1457–1491 (1998)

23. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

24. Dziembowski, S.: How to pair with a human. In: Garay, J.A., De Prisco, R. (eds.)
SCN 2010. LNCS, vol. 6280, pp. 200–218. Springer, Heidelberg (2010)

25. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015)

26. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In: Ning, P., di Vimercati, S.D.C.
Syverson, P.F. (eds.) ACM CCS 2007, pp. 366–374. ACM Press, October 2007

27. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 431–449.
Springer, Heidelberg (2014)

28. Florêncio, D., Herley, C.: Where do security policies come from. In: Proceedings
of SOUPS, p. 10 (2010)

29. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015)

https://papers.nips.cc/paper/2571-using-machine-learning-to-break-visual-human-interaction-proofs-hips.pdf
https://papers.nips.cc/paper/2571-using-machine-learning-to-break-visual-human-interaction-proofs-hips.pdf

Designing Proof of Human-Work Puzzles 545

30. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

31. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

32. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014). http://eprint.iacr.org/2014/507

33. Hwang, K.-F., Huang, C.-C., You, G.-N.: A spelling based CAPTCHA system by
using click. In: 2012 International Symposium on Biometrics and Security Tech-
nologies (ISBAST), pp. 1–8, March 2012

34. Kani, J., Nishigaki, M.: Gamified CAPTCHA. In: Marinos, L., Askoxylakis, I.
(eds.) HAS 2013. LNCS, vol. 8030, pp. 39–48. Springer, Heidelberg (2013)

35. Khot, R.A., Srinathan, K.: iCAPTCHA: image tagging for free. In: Proceedings of
Conference on Usable Software and Interface Design (2009)

36. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 25

37. Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N.,
Cranor, L., Egelman, S.: Of passwords, people: measuring the effect of password-
composition policies. In: Proceedings of the Annual Conference on Human Factors
in Computing Systems, pp. 2595–2604. ACM (2011)

38. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy (2016)

39. Kumarasubramanian, A., Ostrovsky, R., Pandey, O., Wadia, A.: Cryptography
using captcha puzzles. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 89–106. Springer, Heidelberg (2013)

40. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

41. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

42. Miller, A., Kosba, A.E., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 15, pp. 680–691. ACM Press, October 2015

43. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
CAPTCHA. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 134–144 (2003)

44. Motoyama, M., Levchenko, K., Kanich, C., McCoy, D., Voelker, G.M., Savage,
S.: Re: CAPTCHAs-understanding CAPTCHA-solving services in an economic
context. In: 19th USENIX Security Symposium, Washington, DC, USA, 11–13
August 2010, Proceedings, pp. 435–462 (2010)

45. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

46. Narayanan, A., Bonneau, J., Felten, E., Miller, A.: Bitcoin and Cryptocurrency
Technology (online course) (2015). https://piazza.com/princeton/spring2015/
btctech/resources

http://eprint.iacr.org/2014/507
http://dx.doi.org/10.1007/978-3-662-49896-5_25
http://dx.doi.org/10.1007/978-3-662-49896-5_25
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://piazza.com/princeton/spring2015/btctech/resources
https://piazza.com/princeton/spring2015/btctech/resources

546 J. Blocki and H.-S. Zhou

47. Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gaži, P.: Spacemint:
a cryptocurrency based on proofs of space. Cryptology ePrint Archive, Report
2015/528 (2015). http://eprint.iacr.org/2015/528

48. Pass, R., Seeman, L.: abhi shelat. Analysis of the blockchain protocol in asynchro-
nous networks. In: Cryptology ePrint Archive, Report 2016/454 (2016). http://
eprint.iacr.org/2016/454

49. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

51. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: FC (2016). http://arxiv.org/abs/1507.06183

52. Sauer, G., Hochheiser, H., Feng, J., Lazar, J.: Towards a universally usable
CAPTCHA. In: Proceedings of the 4th Symposium on Usable Privacy and Security
(2008)

53. Szabo, N.: Formalizing and securing relationships on public networks. In: First
Monday (1997). http://firstmonday.org/ojs/index.php/fm/article/view/548/469

54. Tam, J., Simsa, J., Hyde, S., Von Ahn, L.: Breaking audio captchas. Advan. Neural
Inf. Process. Syst. 1(4), 1625–1632 (2008)

55. Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI prob-
lems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
294–311. Springer, Heidelberg (2003)

56. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

57. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing
techniques for DoS resistance. In: Atluri, V., Pfitzmann, B., Mc-Daniel, P. (eds.)
ACM CCS 2004, pp. 246–256. ACM Press, October (2004)

58. Wilkins, J.: Strong CAPTCHA guidelines v1.2. (2009). http://bitland.net/captcha.
pdf

http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454
http://arxiv.org/abs/1507.06183
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
http://bitland.net/captcha.pdf
http://bitland.net/captcha.pdf

	Designing Proof of Human-Work Puzzles for Cryptocurrency and Beyond
	1 Introduction
	1.1 Cryptocurrencies Meet AI: Proof of Human-Work Puzzles
	1.2 AI Meets Obfuscation: Constructing Proof of Human-Work Puzzles
	1.3 Related Work

	2 Preliminaries
	2.1 CAPTCHAs
	2.2 Universal Samplers

	3 Proof of Human-Work Puzzles
	3.1 Definitions
	3.2 Construction

	4 Application 1: HumanCoin
	4.1 Bitcoin Background
	4.2 HumanCoin

	5 Application 2: Password Protection
	5.1 Password Authentication Scheme
	5.2 Construction

	6 Future Challenges
	A Universal Samplers: Security Definition
	References

