Skip to main content

Shading Technology

  • Living reference work entry
  • First Online:
Handbook of Energy Systems in Green Buildings

Abstract

Building accounts for more than 40% of the total energy consumption, and excess solar heat gain from glazing results in indoor space overheating and thus high cooling energy demand in modern cities. To eliminate the issue from the bottom, shading technology utilization has come to be treated as an important aspect of many energy-efficient building design strategies. Well-designed Sun control and shading systems cannot only dramatically reduce the solar heat gains and lessen cooling requirements, thus improving thermal comfort of building interiors, but also improve the natural lighting quality and enlarge occupant visual comfort by controlling glare and allowing view out. These often lead to increased occupants’ satisfaction and productivity. Based on previous literatures in the shading technology field, this chapter hereof aims to present an analysis of different types of shading technology for glazing, their thermal/optical properties and energy performance introduced, design method of fixed horizontal shading described, and general design recommendations summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. EP. DIRECTIVE 2002/91/EC: EUR-Lex (2002) The European Parliament and of the Council, Brussels

    Google Scholar 

  2. U.S. Department of Energy (DOE), Building Energy Data Book (2012) http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=1.1.13. Visited 27 July 2017

  3. Pacheco R, Ordóñez J, Martínez G (2012) Energy efficient design of building: a review. Renew Sustain Energy Rev 16:3559–3573

    Article  Google Scholar 

  4. Santamouris M, Kolokotsa D (2013) Passive cooling dissipation techniques for buildings and other structures: the state of the art. Energy Build 57:74–94

    Article  Google Scholar 

  5. Santamouris M (2016) Cooling the buildings − past, present and future. Energy Build 128:617–638

    Article  Google Scholar 

  6. Farrou I, Kolokotroni M, Santamouris M (2016) Building envelope design for climate change mitigation: a case study of hotels in Greece. Int J Sustain Energy 35:944–967

    Article  Google Scholar 

  7. Russell J (2003) Architectural style and management ideals. AV monographs. Arquitectura Viva SL, Madrid

    Google Scholar 

  8. Miller RA, Black LV (1932) Transmission of radiant energy through glass. Heat Vent Eng 38:63–78

    Google Scholar 

  9. Grynning S, Gustavsen A, Time B, Jelle B (2013) Windows in the buildings of tomorrow: energy losers or energy gainers? Energy Build 61:185–192

    Article  Google Scholar 

  10. Wong NH, Agustinus DI (2003) Effects of external shading devices on daylighting and natural ventilation. In: Proceedings of the 8th international IBPSA conference (IBPSA2003), Eindhoven, pp 475–482

    Google Scholar 

  11. Galiano A, Nocera F, Patania F, Moschella A, Detommaso M, Evola G (2016) Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings. Int J Sustain Energy 35:411–428

    Article  Google Scholar 

  12. Valladares-Rendóna LG, Schmid G, Lo SL (2017) Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of facade shading systems. Energy Build 140:458–479

    Article  Google Scholar 

  13. Geetha NB, Velraj R (2012) Passive cooling methods for energy efficient buildings with and without thermal energy storage – a review. Energy Educ Sci Technol A Energy Sci Res 29(2):913–946

    Google Scholar 

  14. Lotfabadi P (2014) High-rise buildings and environmental factors. Renew Sustain Energy Rev 38:285–295

    Article  Google Scholar 

  15. Prieto A, Knaack U, Klein T et al (2017) 25 years of cooling research in office buildings: review for the integration of cooling strategies into the building facade (1990–2014). Renew Sustain Energy Rev 71:89–102

    Article  Google Scholar 

  16. Duncan J (2016) Architectural style: modernism, Royal Institute of British Architects (RIBA). https://www.architecture.com/Explore/ArchitecturalStyles/Modernism.aspx. Visited 28 July 2017

  17. Ralegaonkar RV, Gupta R (2010) Review of intelligent building construction: a passive solar architecture approach. Renew Sustain Energy Rev 14:2238–2242

    Article  Google Scholar 

  18. Bansal NK, Hauser G, Minke G (1994) Passive building design- a handbook of natural climate control. Elsevier Science, Amsterdam

    Google Scholar 

  19. Kumar R, Garg SN, Kaushik SC (2005) Performance evaluation of multi-passive solar applications of a non air-conditioned building. Int J Environ Technol Manag 5:60–75

    Article  Google Scholar 

  20. Ali A (2013) Passive cooling and vernacularism in Mughal buildings in North India: a source of inspiration for sustainable development. Int Trans J Eng Manag Appl Sci Technol 4:15–27

    Google Scholar 

  21. Peebles JC (1940) Final report to the Window Shade Institute, Armour Research Foundation, July

    Google Scholar 

  22. Olgyay V, Olgyay A (1963) Design with climate: bioclimatic approach to architectural regionalism. Princeton University Press, Princeton

    Google Scholar 

  23. Dubois MC (1997) Solar Shading and Building Energy Use, A Literature Review, Part I. Lund University, Institute of Technology

    Google Scholar 

  24. The American Institute of Architects (AIA), Carbon neutral design (CND), Society of Building Science Educators (SBSE), Reduce Loads/demand First –Shading (heat Avoidance) (2012) http://tboake.com/carbon-aia/strategies1b.html. Visited 31 July 2017

  25. Tiwari A, Tiwari GN, Shyam (2016) Handbook of solar energy, theory, analysis and applications[M], Springer

    Google Scholar 

  26. http://www.ftexploring.com/solar-energy/insolation.htm. Visited 29 July 2017

  27. http://uk.saint-gobain-glass.com/trade-customers/glass-and-solar-radiation. Visited 30 July 2017

  28. Low Energy Architecture Research Unit (LEARN) (2015) External shading devices. Clear. http://www.new-learn.info/packages/clear/thermal/buildings/passive_system/solor_acess_control/external_shading.html. Visited 28 July 2017

  29. Olgyay A, Olgyay V (1957) Solar control and shading devices. Princeton University Press, Princeton

    Google Scholar 

  30. Mazria E (1979) The passive solar energy book. Rodale Press, Emmaus

    Google Scholar 

  31. Marsh A (2012) Solar position. Natural frequency. http://wiki.naturalfrequency.com/wiki/Solarposition. Visited 31 July 2017

  32. Architectural Graphic Standards, 11th edn. The American Institute of Architects

    Google Scholar 

  33. Caetano I, Santos L, Leitao A (2015) From idea to shape, from algorithm to design: a framework for generation of contemporary facades. In: 16th international conference, CAAD futures 2015. Springer, Sao Paulo

    Google Scholar 

  34. Nikpour M, Zin Kandar M, Ghasemi M, Ghomeshi M, Reza Safizadeh M (2012) Heat transfer reduction using self shading strategy in energy commission building in Malaysia. J Appl Sci 12:897–901

    Article  Google Scholar 

  35. Capeluto IG (2003) Energy performance of the self-shading building envelope. Energy Build 35:327–336

    Article  Google Scholar 

  36. Chan ALS, Chow TT (2014) Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China. Appl Energy 114:45–57

    Article  Google Scholar 

  37. Lee ES, Tavil A (2007) Energy and visual comfort performance of electrochromic windows with overhangs. Build Environ 42(6):2439–2449

    Article  Google Scholar 

  38. Datta G (2001) Effect of fixed horizontal louver shading devices on thermal performance of building by TRNSYS simulation. Renew Energy 23:497–507

    Article  Google Scholar 

  39. Tzempelikos A, Athienitis AK (2007) The impact of shading design and control on building cooling and lighting demand. Sol Energy 81(3):369–382

    Article  Google Scholar 

  40. Dubois MC (2003) Shading devices and daylight quality: an evaluation based on simple performance indicators. Light Res Technol 359(1):61–74

    Article  Google Scholar 

  41. Simmler H, Binder B (2008) Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading. Build Environ 43(2):197–204

    Article  Google Scholar 

  42. Rungta S (2011) Design guide: horizontal shading devices and light shelves. http://www.public.asu.edu/?kroel/www55/Shaily%20Vipul%20Assignment%203.pdf

  43. Prowler D (2015) Sun control and shading devices. National Institute of Building Sciences (NIBS). http://www.wbdg.org/resources/suncontrol.php. Visited 31 July 2017

  44. Tsangrassoulis A. (2016) Shading and Daylight Systems. In: Boemi SN., Irulegi O., Santamouris M. (eds) Energy Performance of Buildings. Springer, Cham

    Google Scholar 

  45. Chua KJ, Chou SK (2010) Evaluating the performance of shading devices and glazing types to promote energy efficiency of residential buildings. Build Simul 3(3):181–194

    Article  Google Scholar 

  46. Meyer U (2012) Architectural guide Taiwan. DOM Publishers, Berlin

    Google Scholar 

  47. Kim G, Lim HS, Lim TS et al (2012) Comparative advantage of an exterior shading device in thermal performance for residential buildings. Energy Build 46(4):105–111

    Article  Google Scholar 

  48. Bellia L, Marino C, Minichiello F, Pedace A (2014) An overview on solar shading systems for buildings. Energy Procedia 62:309–317

    Article  Google Scholar 

  49. Mandalaki M, Zervas K, Tsoutsos T et al (2012) Assessment of fixed shading devices with integrated PV for efficient energy use. Sol Energy 86(9):2561–2575

    Article  Google Scholar 

  50. Fontoynont M (1999) Daylight performance of buildings. James & James Ltd, London

    Google Scholar 

  51. Mehrotra M (2005) Solar control devices; balance between thermal performance and daylight. in: Proceedings of Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, pp 991–96

    Google Scholar 

  52. Yoo SH, Manz H (2011) Available remodeling simulation for a BIPV as a shading device. Sol Energy Mater Sol Cells 95(1):394–397

    Article  Google Scholar 

  53. Lee ES, Dibartolomeo DL, Selkowitz SE (1998) Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office. Energy Build 29(29):47–63

    Article  Google Scholar 

  54. Mettanant V, Chaiwiwatworakul P (2014) Application of automated vertical blinds for daylighting in tropical region. Energy Procedia 52:278–286

    Article  Google Scholar 

  55. Kirimtat A, Koyunbaba BK, Chatzikonstantinou I et al (2016) Review of simulation modeling for shading devices in buildings. Renew Sustain Energy Rev 53:23–49

    Article  Google Scholar 

  56. http://www.house-energy.com/Landscape/Overhangs.htm. Visited 28 July 2017

  57. Shading Devices (n.d.) http://www.usc.edu/dept-00/dept/architecture/mbs/tools/thermal/shadedevice.html

  58. Konstantoglou M, Tsangrassoulis A (2016) Dynamic operation of daylighting and shading systems: a literature review. Renew Sustain Energy Rev 60:268–283

    Article  Google Scholar 

  59. Tzempelikos A (2008) The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance. Sol Energy 82(12):1172–1191

    Article  Google Scholar 

  60. Galasiu AD, Atif MR, Macdonald RA (2004) Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls. Sol Energy 76(5):523–544

    Article  Google Scholar 

  61. Clark J, Peeters L, Novoselac A (2013) Experimental study of convective heat transfer from windows with Venetian blinds. Build Environ 59(59):690–700

    Article  Google Scholar 

  62. Tzempelikos A, Shen H (2013) Comparative control strategies for roller shades with respect to daylighting and energy performance. Build Environ 67(5):179–192

    Article  Google Scholar 

  63. http://www.reuk.co.uk/wordpress/energy-efficiency/low-e-double-glazing/. Visited 28 July 2017

  64. Eskin N, Türkmen H (2008) Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey. Energy Build 40:763–773

    Article  Google Scholar 

  65. Granqvist CG (2012) Oxide electrochromics: an introduction to devices and materials. Sol Energy Mater Sol Cells 99(4):1–13

    Article  Google Scholar 

  66. Assimakopoulos MN, Tsangrassoulis A, Santamouris M et al (2007) Comparing the energy performance of an electrochromic window under various control strategies. Build Environ 42(8):2829–2834

    Article  Google Scholar 

  67. Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Solar Energy Materials and Solar Cells, 76(4):489–499

    Google Scholar 

  68. Aldawoud A (2013) Conventional fixed shading devices in comparison to an electro-chromic glazing system in hot, dry climate. Energy Build 59:104–110

    Article  Google Scholar 

  69. Lee ES, Selkowitz SE, Clear R, DiBartolomeo DL (2006) Advancement of electro-chromic windows. California Energy Commission/Lawrence Berkeley Lab, Berkeley

    Book  Google Scholar 

  70. Bahaj AS, James PAB, Jentsch MF (2008) Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energy Build 40:720–731

    Article  Google Scholar 

  71. Clear RD, Inkarojrit V, Lee ES (2006) Subject responses to electro-chromic windows. Energy Build 38(7):758–779

    Article  Google Scholar 

  72. Zinzi M (2006) Office worker preferences of electro-chromic windows: a pilot study. Build Environ 41(9):1262–1273

    Article  Google Scholar 

  73. Lee ES, Tavil A (2007) Energy and visual comfort performance of electro-chromic windows with overhangs. Building and Environment, 42(6):2439–2449

    Google Scholar 

  74. Fernandes LL, Lee ES, Ward G (2013) Lighting energy savings potential of split-pane electro-chromic windows controlled for daylighting with visual comfort. Energy Build 61(61):8–20

    Article  Google Scholar 

  75. Ibraheem Y, Farr ERP, Piroozfar PAE (2017) Embedding passive intelligence into building envelopes: a review of the state-of-the-art in integrated photovoltaic shading devices. Energy Procedia 111:964–973

    Article  Google Scholar 

  76. Solar Energy Explorer. BIPV-building integrated photovoltaic. Available from http://www.solarenergyexplorer.com/bipv.html#axzz3QnEPfHCm

  77. Yoo SH, Lee ET, Lee JK (1998) Building integrated photovoltaics: a Korean case study. Sol Energy 64:151–161

    Article  Google Scholar 

  78. DGS Guide (2008) Planning and installing photovoltaic systems: a guide for installers, architects and engineers, 2nd edn. Earthscan, London

    Google Scholar 

  79. Sun L, Lu L, Yang H (2012) Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl Energy 90(1):233–240

    Article  Google Scholar 

  80. Zhang X (2014) Building performance evaluation of integrated transparent photovoltaic blind system by a virtual testbed. MSc dissertation, Eindhoven University of Technology, Eindhoven. Available http://www.janhensen.nl/team/past/master/Zhang_2014.pdf

  81. Kang S, Hwang T, Kim JT (2012) Theoretical analysis of the blinds integrated photovoltaic modules. Energy Build 46:86–91

    Article  Google Scholar 

  82. Mandalaki M, Papantoniou S, Tsoutsos T (2014) Assessment of energy production from photovoltaic modules integrated in typical shading devices. Sustain Cities Soc 10:222–231

    Article  Google Scholar 

  83. Lee ES, Selkowitz SE, DiBartolomeo DL, Klems JH, Clear RD, Konis K, Hitchcock R, Yazdanian M, Mitchell R, Konstantoglou M (2009) High performance building facade solutions. Lawrence Berkeley National Laboratory. Report number: 4583E

    Google Scholar 

  84. Kara YA, Kurnuc A (2012) Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study. Sol Energy 86:2432–2442

    Article  Google Scholar 

  85. Goia F, Perino M, Serra V (2013) Improving thermal comfort conditions by means of PCM glazing systems. Energy Build 60:442–452

    Article  Google Scholar 

  86. Alawadhi EM (2012) Using phase change materials in window shutter to reduce the solar heat gain. Energy Build 47(3):421–429

    Article  Google Scholar 

  87. Soares N, Costa JJ, Samagaio A et al (2014) Numerical evaluation of a phase change material–shutter using solar energy for winter nighttime indoor heating. J Build Phys 37(4):367–394

    Article  Google Scholar 

  88. Silva T, Vicente R, Rodrigues F et al (2015) Development of a window shutter with phase change materials: full scale outdoor experimental approach. Energy Build 88:110–121

    Article  Google Scholar 

  89. Merker O, Hepp F, Beck A, Fricke J (2002) A new solar shading system with phase change material (PCM). In: Proceedings of the world renewable energy congress WII, Cologne

    Google Scholar 

  90. Silva T, Vicente R, Rodrigues F (2016) Literature review on the use of phase change materials in glazing and shading solutions. Renew Sustain Energy Rev 53:515–535

    Article  Google Scholar 

  91. Hunter AM, Williams NSG, Rayner JP et al (2014) Quantifying the thermal performance of green facades: a critical review. Ecol Eng 63:102–113

    Article  Google Scholar 

  92. Panagopoulos T (2008) Using microclimatic landscape design to create thermal comfort and energy efficiency. In: Conferência Sobre Edifícios Eficientes, Universidade do Algarve, pp 1–4

    Google Scholar 

  93. Ip K, Lam M, Miller A (2010) Shading performance of a vertical deciduous climbing plant canopy. Build Environ 45(1):81–88

    Article  Google Scholar 

  94. Littler J (1993) Test cells: do we need them? Build Environ 28(2):221–228

    Article  Google Scholar 

  95. Klems J, Keller H (1987) Measurement of single and double glazing thermal performance under realistic conditions using the mobile window thermal test (MoWiTT) facility. Sol Eng 1:424–430

    Google Scholar 

  96. Lee E, Clear R, Luis F (2007) Commissioning and verification procedures for the automated roller shade system at the New York Times headquarters, New York. Lawrence Berkeley Lab/Greg Ward, Anyhere Software, Berkeley

    Google Scholar 

  97. Bülow-Hübe H (2007) Solar shading and daylight redirection. Demonstration project for a system of motorized daylight redirecting Venetian blinds and light controlled luminaire. Energy and Building Design, Lund University

    Google Scholar 

  98. Roche L (2002) Summertime performance of an automated lighting and blinds control system. Light Res Technol 34(1):11–27

    Article  Google Scholar 

  99. Skelly M, Wilkinson M (2001) The evolution of interactive facades: improving automated blind control. Whole life performance of facades: 129–142

    Google Scholar 

  100. Pfrommer P, Lomas KJ, Kupke C (1996) Solar radiation transport through slat-type blinds: a new model and its application for thermal simulation of buildings. Sol Energy 57(2):77–91

    Article  Google Scholar 

  101. Crawley DB, Hand JW, Kummert M et al (2008) Contrasting the capabilities of building energy performance simulation programs. Build Environ 43(4):661–673

    Article  Google Scholar 

  102. Lunde HA, Lindley JA (1988) Effects of window treatments in cold climates. Home Econ Res J 16(3):223–235

    Article  Google Scholar 

  103. Architect’s Journal (1976) Blinds; shading devices – blinds, louvres, awnings. Archit J 176(35):63–70

    Google Scholar 

  104. Steemers K (1989) External shading devices. Building technical file, vol 27. The Martin Centre for Architectural and Urban Studies, Cambridge, pp 9–16

    Google Scholar 

  105. Hoyano A (1985) Solar control by vine sunscreen and its passive cooling effects. In: Proceedings of the international symposium on thermal application of solar energy (April 7–10, Hakone, Japan). Japan Solar Energy Society, Tokyo, pp 271–276

    Google Scholar 

  106. Harkness EL (1988) The energy and thermal comfort advantages of shading windows. Aust Refrig Air Cond Heat 42(10):33–41

    Google Scholar 

  107. Brambley MR, Kennedy EM, Penner SS (1981) Fenestration devices for energy conservation – IV. Field study. Energy 6(9):883–894. Pergamon, Great Britain

    Article  Google Scholar 

  108. Halmos GB (1974) Solar protection – costs and benefits. Heat Air Cond J 44(520):24–25

    Google Scholar 

  109. Hwang R-L, Shu S-Y (2011) Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Build Environ 46:824–834

    Article  Google Scholar 

  110. Pino A, Bustamante W, Escobar R et al (2012) Thermal and lighting behavior of office buildings in Santiago of Chile. Energy Build 47(4):441–449

    Article  Google Scholar 

  111. Ferrari S, Zanotto V (2012) Office buildings cooling need in the Italian climatic context: assessing the performances of typical envelopes. Energy Procedia 30:1099–1109

    Article  Google Scholar 

  112. Manzan M (2014) Genetic optimization of external fixed shading devices. Energy Build 72:431–440

    Article  Google Scholar 

  113. Treado S, Barnett J, Remmert W (1984) Effectiveness of solar shading for an office building. NBS building science series 161. U.S. Department of Commerce, Washington, DC. 102p. National Bureau of Standards

    Google Scholar 

  114. Bilgen E (1994) Experimental study of thermal performance of automated Venetian blind window systems. Sol Energy 52(1):3–7. Pergamon, Great Britain

    Article  Google Scholar 

  115. Emery AF, Johnson BR, Heerwagen DR, Kippenhan CJ (1981) Assessing the benefit-costs of employing alternative shading devices to reduce cooling loads for three climates. In: Proceedings of the international passive and hybrid cooling conference. American Section of the International Passive and Hybrid Cooling Conference, pp 417–421

    Google Scholar 

  116. Treado S, Barnett J, Kusuda T (1983) Energy and cost evaluation of solar window film use in an office building. NBS technical note 1174. U.S. Department of Commerce, Washington, DC. 111p. National Bureau of Standards

    Google Scholar 

  117. Hunn BD, Jones JW, Grasso MM, Hitzfelder JD (1990) Effect of shading devices on building energy use and peak demand in Minnesota. Conservation and Solar Research Report no. 9. The University of Texas at Austin, Austin. 100p. Center for Energy Studies

    Google Scholar 

  118. Hunn BD, Grasso MM, Jones JW, Hitzfelder JD (1993) Effectiveness of shading devices on buildings in heating-dominated climates. ASHRAE transactions. In: Proceedings of the 1993 winter meeting of ASHRAE transactions (Chicago), vol 99. Pt 1. ASHRAE, Atlanta, pp 207–222

    Google Scholar 

  119. Pletzer RK, Jones JW, Hunn BD (1988) Effect of shading devices on residential energy use in Austin, Texas. Conservation and Solar Research Report no. 5. The University of Texas at Austin, Austin. 156p. Center for Energy Studies

    Google Scholar 

  120. Dubois MC (2001) Solar shading for low energy use and daylight quality in offices. Simul Trans Soc Model Simul Int 20(3):58–67

    Google Scholar 

  121. Mc Cluney R, Chandra S (1984) Comparison of window shading strategies for heat gain prevention. In: Ninth passive solar conference (September 24–26, 1984, Columbus, OH), vol 9. American Solar Energy Society, pp 414–419

    Google Scholar 

  122. Kim JT, Kim G (2010) Advanced external shading device to maximize visual and view performance. Indoor Built Environ 19:65–72

    Article  Google Scholar 

  123. Atzeri A, Cappelletti F, Gasparella A (2014) Internal versus external shading devices performance in office buildings. Energy Procedia 45:463–472

    Article  Google Scholar 

  124. Atzeri A, Cappelletti F, Gasparella A, Shen H, Tzempelikos A (2014) Assessment of long-term visual and thermal comfort and energy performance in open-space offices with different shading devices. In: 3rd international high performance buildings conference at Purdue. Purdue e-Pubs

    Google Scholar 

  125. Zelenay K, Perepelitza M, Lehrer D (2011) High-performance facades design strategies and applications in North America and Northern Europe. Center for the Built Environment, University of California, CA, USA, p 92

    Google Scholar 

  126. Laouadi A, Galasiu A, Swinton M, Manning M, Marchand R, Arsenault C et al (2008) Field performance of exterior solar shadings for residential windows: winter results. eSim, Quebec City, 20–22 May, pp 1–8

    Google Scholar 

  127. CIBSE TM37 (2006) Design for improved solar shading control. The Chartered Institution of Building Services Engineers, London

    Google Scholar 

  128. Littlefair PJ (1995) Daylighting design for display-screen equipment. BRE information paper IP10/95. BRE, Garston

    Google Scholar 

  129. Littlefair PJ (2002) Retrofitting solar shading. BRE information paper IP11/02. BRE, Garston

    Google Scholar 

  130. Claros ST, Soler A (2002) Indoor daylight climate-influence of light shelf and model reflectance on light shelf performance in Madrid for hours with unit sunshine fraction. Build Environ 37:587–598

    Article  Google Scholar 

  131. O’Brien W, Kapsis K, Athienitis AK (2013) Manually-operated window shade patterns in office buildings: a critical review. Build Environ 60(2):319–338

    Article  Google Scholar 

  132. Torcellini PA, Pless S, Lobato C (2010) Main street net-zero energy buildings: the zero energy method in concept and practice. In: ASME 4th international conference on energy sustainability, Pheonix, pp 1009–1017

    Google Scholar 

  133. Tzempelikos A, Athienitis AK, Karava P (2007) Simulation of facade and envelope design options for a new institutional building. Sol Energy 81:1088–1103

    Article  Google Scholar 

  134. Handbook fundamentals (2005) SI Ed. American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE), Atlanta

    Google Scholar 

  135. Christoffersen J, Petersen E, Johnsen K (1997) An experimental evaluation of daylight systems and lighting control[C]. In: Right light 4, European conference on energy-efficient lighting, Copenhagen, Denmark, pp 47–62

    Google Scholar 

  136. Reinhart CF, Mardaljevic J, Rogers Z (2006) Dynamic daylight performance metrics for sustainable building design. Leukos 3:1–25

    Google Scholar 

  137. Reinhart CF (2002) Effects of interior design on the daylight availability in open plan offices. In: Proceedings of the ACEEE summer study on energy efficiency in buildings, Pacific Grove, CA., U.S.A., pp 1–12

    Google Scholar 

  138. Van Den Wymelenberg K (2012) Patterns of occupant interaction with window blinds: a literature review. Energy Build 51(8):165–176

    Article  Google Scholar 

  139. Chan Y-C, Tzempelikos A (2013) Efficient venetian blind control strategies considering daylight utilization and glare protection. Sol Energy 98(Part C):241–254

    Article  Google Scholar 

  140. Nicol JF, Humphreys MA (2002) Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build 34:563–572

    Article  Google Scholar 

  141. Karjalainen S (2009) Thermal comfort and use of thermostats in Finnish homes and offices. Build Environ 44:1237–1245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojian Xie .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Xie, X., Wei, J., Huang, J. (2018). Shading Technology. In: Wang, R., Zhai, X. (eds) Handbook of Energy Systems in Green Buildings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49088-4_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49088-4_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49088-4

  • Online ISBN: 978-3-662-49088-4

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics