Skip to main content

Abstract

Degenerative disk disease (DDD) results in alterations of both the intervertebral disk and vertebral end plates and has three common sequelae: disk herniation, stenosis, and instability. The progressive dehydration of the nucleus pulposus secondary to degradation of proteoglycans and the development of clefts within the anulus fibrosus lead to loss of height of the intervertebral space and bulging of anulus outer fibers. Besides, cartilaginous end plate thinning and focal anular rupture occur, associated with alterations of subchondral bone properties. DDD is usually associated with apophyseal joint osteoarthritis which contributes to central, radicular, and/or foraminal stenosis. Instability secondary to the loss of normal spinal biomechanics may be identified on static or dynamic radiographs and manifest potentially as spondylolisthesis or retrolisthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikegawa S. The genetics of common degenerative skeletal disorders: osteoarthritis and degenerative disc disease. Annu Rev Genomics Hum Genet. 2013;14:245–56.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts N, Gratin C, Whitehouse G. MRI analysis of lumbar intervertebral disc height in young and older populations. J Magn Reson Imaging. 2005;7:880–6.

    Article  Google Scholar 

  3. Frobin W, Brinckmann P, Kramer M, Hartwig E. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur Radiol. 2001;11:263–9.

    Article  CAS  PubMed  Google Scholar 

  4. McCulloch JA, Transfeldt EE. Macnab’s backache. Baltimore: Williams & Wilkins; 1997.

    Google Scholar 

  5. Goobar JE, Pate D, Resnick D, Sartoris DJ. Radiography of the hyperextended lumbar spine: an effective technique for the demonstration of discal vacuum phenomena. Can Assoc Radiol J. 1987;38:271–4.

    CAS  PubMed  Google Scholar 

  6. Kasai Y, Takegami K, Uchida A. Change of barometric pressure influences low back pain in patients with vacuum phenomenon within lumbar intervertebral disc. J Spinal Disord Tech. 2002;15:290–3.

    Article  PubMed  Google Scholar 

  7. Morishita K, Kasai Y, Uchida A. Clinical symptoms of patients with intervertebral vacuum phenomenon. Neurologist. 2008;14:37–9.

    Article  PubMed  Google Scholar 

  8. Berns DH, Ross JS, Kormos D, Modic MT. The spinal vacuum phenomenon: evaluation by gradient echo MR imaging. J Comput Assist Tomogr. 1991;15:233–6.

    Article  CAS  PubMed  Google Scholar 

  9. Grenier N, Grossman RI, Schiebler ML, Yeager BA, Goldberg HI, Kressel HY. Degenerative lumbar disk disease: pitfalls and usefulness of MR imaging in detection of vacuum phenomenon. Radiology. 1987;164:861–5.

    Article  CAS  PubMed  Google Scholar 

  10. Eubanks JD, Lee MJ, Cassinelli E, Ahn NU. Prevalence of lumbar facet arthrosis and its relationship to age, sex, and race: an anatomic study of cadaveric specimens. Spine. 2007;32:2058–62.

    Article  PubMed  Google Scholar 

  11. Friedrich KM, Nemec S, Peloschek P, Pinker K, Weber M, Trattnig S. The prevalence of lumbar facet joint edema in patients with low back pain. Skelet Radiol. 2007;36:755–60.

    Article  Google Scholar 

  12. Pfirrmann CW, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology. 2001;219:368–74.

    Article  CAS  PubMed  Google Scholar 

  13. Chanchairujira K, Chung CB, Kim JY, et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology. 2004;230:499–503.

    Article  PubMed  Google Scholar 

  14. Cheng XG, Brys P, Nijs J, et al. Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skelet Radiol. 1996;25:231–5.

    Article  CAS  Google Scholar 

  15. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.

    Article  CAS  PubMed  Google Scholar 

  16. Stabler A, Weiss M, Scheidler J, Krodel A, Seiderer M, Reiser M. Degenerative disk vascularization on MRI: correlation with clinical and histopathologic findings. Skelet Radiol. 1996;25:119–26.

    Article  CAS  Google Scholar 

  17. Malghem J, Lecouvet FE, Francois R, et al. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skelet Radiol. 2005;34:80–6.

    Article  Google Scholar 

  18. Bangert BA, Modic MT, Ross JS, et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology. 1995;195:437–43.

    Article  CAS  PubMed  Google Scholar 

  19. Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology. 1988;168:177–86.

    Article  CAS  PubMed  Google Scholar 

  20. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology. 2007;245:43–61.

    Article  PubMed  Google Scholar 

  21. Sandhu HS, Sanchez-Caso LP, Parvataneni HK, Cammisa Jr FP, Girardi FP, Ghelman B. Association between findings of provocative discography and vertebral endplate signal changes as seen on MRI. J Spinal Disord. 2000;13:438–43.

    Article  CAS  PubMed  Google Scholar 

  22. Weishaupt D, Zanetti M, Hodler J, et al. Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging. Radiology. 2001;218:420–7.

    Article  CAS  PubMed  Google Scholar 

  23. Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol. 2002;179:1151–7.

    Article  PubMed  Google Scholar 

  24. Kawaguchi Y, Matsuno H, Kanamori M, Ishihara H, Ohmori K, Kimura T. Radiologic findings of the lumbar spine in patients with rheumatoid arthritis, and a review of pathologic mechanisms. J Spinal Disord Tech. 2003;16:38–43.

    Article  PubMed  Google Scholar 

  25. Khalfallah M, Faure A, Hamel O, et al. Dialysis-associated spondyloarthropathy. Case report and literature review. Neurochirurgie. 2005;51:165–72.

    Article  CAS  PubMed  Google Scholar 

  26. Lagier R, Mac GW. Spondylodiscal erosions due to gout: anatomico-radiological study of a case. Ann Rheum Dis. 1983;42:350–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Runge M, Bui P, Bonneville JF. Pseudospondylodiscitis in chronic hemodialysis. Apropos of 2 cases and review of the literature. J Radiol. 1987;68:511–8.

    CAS  PubMed  Google Scholar 

  28. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mitra D, Cassar-Pullicino VN, McCall IW. Longitudinal study of vertebral type-1 end-plate changes on MR of the lumbar spine. Eur Radiol. 2004;14:1574–81.

    Article  CAS  PubMed  Google Scholar 

  30. Vital JM, Gille O, Pointillart V, et al. Course of Modic 1 six months after lumbar posterior osteosynthesis. Spine. 2003;28:715–20. discussion 721.

    CAS  PubMed  Google Scholar 

  31. Marshman LA, Trewhella M, Friesem T, Bhatia CK, Krishna M. Reverse transformation of Modic type 2 changes to Modic type 1 changes during sustained chronic low-back pain severity. Report of two cases and review of the literature. J Neurosurg Spine. 2007;6:152–5.

    Article  PubMed  Google Scholar 

  32. Modic MT. Modic type 1 and type 2 changes. J Neurosurg Spine. 2007;6:150–1. discussion 151.

    Article  PubMed  Google Scholar 

  33. Lakadamyali H, Tarhan NC, Ergun T, Cakir B, Agildere AM. STIR sequence for depiction of degenerative changes in posterior stabilizing elements in patients with lower back pain. AJR Am J Roentgenol. 2008;191:973–9.

    Article  PubMed  Google Scholar 

  34. D’Aprile P, Tarantino A, Jinkins JR, Brindicci D. The value of fat saturation sequences and contrast medium administration in MRI of degenerative disease of the posterior/perispinal elements of the lumbosacral spine. Eur Radiol. 2007;17:523–31.

    Article  PubMed  Google Scholar 

  35. Doyle AJ, Merrilees M. Synovial cysts of the lumbar facet joints in a symptomatic population: prevalence on magnetic resonance imaging. Spine. 2004;29:874–8.

    Article  PubMed  Google Scholar 

  36. Maes R, Morrison WB, Parker L, Schweitzer ME, Carrino JA. Lumbar interspinous bursitis (Baastrup disease) in a symptomatic population: prevalence on magnetic resonance imaging. Spine. 2008;33:E211–5.

    Article  PubMed  Google Scholar 

  37. Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55:145–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bierry G, Kremer S, Kellner F, Abu Eid M, Bogorin A, Dietemann JL. Disorders of paravertebral lumbar muscles: from pathology to cross-sectional imaging. Skelet Radiol. 2008;37:967–77.

    Article  Google Scholar 

  39. Jinkins JR. Acquired degenerative changes of the intervertebral segments at and suprajacent to the lumbosacral junction. A radioanatomic analysis of the nondiscal structures of the spinal column and perispinal soft tissues. Eur J Radiol. 2004;50:134–58.

    Article  PubMed  Google Scholar 

  40. Thakkar RS, Malloy JP, Thakkar SC, Carrino JA, Khanna AJ. Imaging the postoperative spine. Radiol Clin N Am. 2012;50:731–47.

    Article  PubMed  Google Scholar 

  41. Antoniou J, Dmers C, Beaudouin G. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging. 2004;22:963–72.

    Article  PubMed  Google Scholar 

  42. Kealey S, Aho T, Delong D, Barboriak D, Provenzale J, Eastwood J. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology. 2005;235:569–74.

    Article  PubMed  Google Scholar 

  43. Gatehouse PD, He T, Hughes SP, Bydder GM. MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. MAGMA. 2004;16:160–6.

    Article  PubMed  Google Scholar 

  44. Bae WC, Statum S, Zhang Z, et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology. 2013;266:564–74.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Haneder S, Apprich S, Schmitt B, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol. 2013;23:861–8.

    Article  PubMed  Google Scholar 

  46. Zuo J, Joseph G, Li X, et al. In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1ρ imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine. 2012;37:214–21.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Alyas F, Connell D, Saifuddin A. Upright positional MRI of the lumbar spine. Clin Radiol. 2008;63:1035–48.

    Article  CAS  PubMed  Google Scholar 

  48. Madsen R, Jensen TS, Pope M, Sorensen JS, Bendix T. The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis. Spine. 2008;33:61–7.

    Article  PubMed  Google Scholar 

  49. Kinder A, Filho F, Ribeiro E, et al. Magnetic resonance imaging of the lumbar spine with axial loading: a review of 120 cases. Eur J Radiol. 2012;81:561–4.

    Article  Google Scholar 

  50. Illes T, Somoskeoy S. The EOS imaging system and its uses in daily orthopaedic practice. Int Orthop. 2012;36:1325–31.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ilharreborde B, Steffen JS, Nectoux E, et al. Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine. 2011;36:E1306–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bierry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bierry, G., Dietemann, JL. (2016). Imaging of Degenerative Disk Disease. In: Pinheiro-Franco, J., Vaccaro, A., Benzel, E., Mayer, H. (eds) Advanced Concepts in Lumbar Degenerative Disk Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47756-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47756-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47755-7

  • Online ISBN: 978-3-662-47756-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics