Skip to main content

Inverse Gravimetry: Density Signatures from Gravitational Potential Data

  • Living reference work entry
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 226 Accesses

Abstract

This paper represents an extended version of the publications Freeden W. (2015) Geomathematics: its role, its aim, and its potential. In: Freeden W., Nashed M.Z., Sonar T. (eds) Handbook of Geomathematics, 2nd edn, vol 1, 3–78. Springer, New York/Heidelberg, “Handbook of Geomathematics”, Springer, 2015, Freeden W., Nashed M.Z. (2018) Inverse gravimetry as an ill-posed problem in mathematical geodesy. In: Freeden W., Nashed M.Z. (eds) Handbook of Mathematical Geodesy. Geosystems Mathematics, 641–685. Birkhäuser/Springer, Basel/New-York/Heidelberg “Handbook of Mathematical Geodesy”, Birkhäuser, International Springer Publishing, 2018, and, in particular, Freeden W., Nashed M.Z. (2018) GEM Int J Geomath. https://doi.org/10.1007/s13137-018-0103-5 from which all the theoretical framework is taken over to this work. The aim of the paper is to deal with the ill-posed problem of transferring input gravitational potential information in the form of Newtonian volume integral values to geological output characteristics of the density contrast function.

Some essential properties of the Newton volume integral are recapitulated. Different methodologies of the resolution of the inverse gravimetry problem and their numerical implementations are examined including their dependence on the data source. Three types of input information may be distinguished, namely internal (borehole), terrestrial (surface), and/or external (spaceborne) gravitational data sets. Singular integral theory based inversion of the Newtonian integral equation such as a Haar-type solution is handled in a multiscale framework to decorrelate specific geological signal signatures with respect to inherently given features. Reproducing kernel Hilbert space regularization techniques are studied (together with their transition to certain mollified variants) to provide geological contrast density distributions by “downward continuation” from terrestrial and/or spaceborne data. Numerically, reproducing kernel Hilbert space spline solutions are formulated in terms of Gaussian approximating sums for use of gravimeter data systems.

Zusammenfassung

Diese Arbeit stellt eine erweiterte Version der Publikationen Freeden W. (2015) Geomathematics: its role, its aim, and its potential. In: Freeden W., Nashed M.Z., Sonar T. (eds) Handbook of Geomathematics, 2nd edn, vol 1, 3–78. Springer, New York/Heidelberg, ,,Handbook of Geomathematics“, Springer, 2015, Freeden W., Nashed M.Z. (2018) Inverse gravimetry as an ill-posed problem in mathematical geodesy. In: Freeden W., Nashed M.Z. (eds) Handbook of Mathematical Geodesy. Geosystems Mathematics, 641–685. Birkhäuser/Springer, Basel/New-York/Heidelberg ,,Handbook of Mathematical Geodesy“, Birkhäuser, International Springer Publishing, 2018, und, insbesondere, (Freeden W., Nashed M.Z. (2018) GEM Int J Geomath. https://doi.org/10.1007/s13137-018-0103-5) dar, deren theoretisches Gerüst vollständig übernommen wurde. Ziel der Arbeit ist die Beschäftigung mit dem schlecht-gestellten Problem, gravitative Potential-Input-Information in Form von Newtonschen Volumenintegralwerten in geologische Output-Charakteristika der Dichtekontrastfunktion umzuwandeln.

Einige wesentliche Eigenschaften des Newtonschen Volumenintegrals werden rekapituliert. Verschiedene Methoden zur Lösung des inversen Gravimetrieproblems sowie numerische Implementierungen werden abhängig von der Datenquelle untersucht. Drei Typen von Inputdaten-Information lassen sich unterscheiden, nämlich innere (Bohrloch), terrestrische (Erdoberfläche), und/oder äußere (Raum) Gravitationsdatensätze. Inversion der Newtonschen Integralgleichnung basierend auf singuärer Integrationstheorie, wie etwa Haar-Typ Inversion, wird in einem Multiskalengefüge zur Dekorrelation spezifischer geologischer Signalsignaturen mit inhärent gegebenen Merkmalen behandelt. Reproduzierende Kern-Hilbertraum-Regulasierungstechniken werden (zusammen mit ihrem Übergang zu bestimmten Mollifier-Varianten) studiert, um geologische Kontrastdichteverteilungen durch ,,Fortsetzen nach unten“ aus terrestrischen und/oder räumlichen Daten zu erhalten. Für die Anwendung auf Gravimeterdatensysteme werden reproduzierende Hilbertraum-Kern-Spline-Lösungen numerisch in Form Gaußscher approximierender Summen formuliert.

This contribution is based on the article: Freeden, W. & Nashed, M.Z. Int J Geomath (2018). https://doi.org/10.1007/s13137-018-0103-5

This chapter is part of the series Handbuch der Geodäsie, volume “Mathematical Geodesy/Mathematische Geodäsie”, edited by Willi Freeden, Kaiserslautern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, Inc., New York (1964)

    Google Scholar 

  2. Anger, G.: A characterization of inverse gravimetric source problem through extremal measures. Rev. Geophys. Space Phys. 19, 299–306 (1981)

    Article  Google Scholar 

  3. Anger, G.: Inverse Problems in Differential Equations. Akademie–Verlag, Berlin (1990)

    Google Scholar 

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  Google Scholar 

  5. Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge–Walsh concept for gravitational field determination. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 517–560. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  6. Backus, G.E., Gilbert, F.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. 13, 247–276 (1967)

    Article  Google Scholar 

  7. Backus, G.E., Gilbert, F.: The resolving power of gross earth data. Geophys. J. R. Astron. Soc. 16, 169–205 (1968)

    Article  Google Scholar 

  8. Backus, G.E., Gilbert, F.: Uniqueness of the inversion of inaccurate gross earth data. Philos. Trans. R. Soc. London 226, 123–197 (1970)

    Article  Google Scholar 

  9. Ballani, L.: Solving the inverse gravimetric problem: on the benefit of wavelets. In: Sansò, F. (ed.) Geodetic Theory Today, Proceedings of the 3rd Hotine–Marussi Symposium on Mathematical Geodesy 1994, pp. 151–161. Springer, Berlin (1995)

    Google Scholar 

  10. Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod. 18, 99–114 (1993)

    Google Scholar 

  11. Ballani, L., Stromeyer, D.: The inverse gravimetric problem: a Hilbert space approach. In: Holota, P. (ed.) Proceedings of the International Symposium Figure of the Earth, the Moon, and Other Planets 1982, pp. 359–373. Prague (1983)

    Google Scholar 

  12. Ballani, L., Stromeyer, D., Barthelmes, F.: Decomposition principles for linear source problems. In: Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W. (eds.) Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, Mathematical Research, 47. Akademie–Verlag, Berlin (1993)

    Google Scholar 

  13. Barzaghi, R., Sansò, F.: Remarks on the inverse gravimetric problem. Boll. Geod. Sci. Aff. 45, 203–216 (1986)

    Google Scholar 

  14. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums . Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  Google Scholar 

  15. Beylkin, G., Monzón, L.: Approximation of functions by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)

    Article  Google Scholar 

  16. Blick, C.: Multiscale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion. Ph.D.-Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2015)

    Google Scholar 

  17. Blick, C., Freeden, W., Nutz, H.: Gravimetry and exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 687–752. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  18. Burschäpers, H.C.: Local modeling of gravitational data. Master Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2013)

    Google Scholar 

  19. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  Google Scholar 

  20. Davis, P.J.: Interpolation and Approximation. Blaisdell, New York (1963)

    Google Scholar 

  21. Engl, H.: Integralgleichungen. Springer Lehrbuch Mathematik, Wien (1997)

    Book  Google Scholar 

  22. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  23. Engl, H., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

    Google Scholar 

  24. Freeden, W.: On the approximation of external gravitational potential with closed systems of (Trial) functions. Bull. Géod. 54, 1–20 (1980)

    Article  Google Scholar 

  25. Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)

    Google Scholar 

  26. Freeden, W.: A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Math. Part. Diff. Equ. 3, 375–398 (1987)

    Article  Google Scholar 

  27. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart/Leipzig (1999)

    Google Scholar 

  28. Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–78. Springer, New York/Heidelberg (2015)

    Chapter  Google Scholar 

  29. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65, 1–15 (2013)

    Google Scholar 

  30. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London/New York (2013)

    Google Scholar 

  31. Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo)Physics. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  32. Freeden, W., Gutting, M.: Integration and Cubature Methods. Chapman and Hall/CRC Press, Boca Raton/London/New York (2018)

    Google Scholar 

  33. Freeden, W., Kersten, H.: The geodetic boundary-value problem using the known surface of the earth. Veröff. Geod. Inst. RWTH Aachen 29, 1–70 (1980)

    Google Scholar 

  34. Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Meth. Appl. Sci. 4, 104–114 (1981)

    Article  Google Scholar 

  35. Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. (ETNA) 14, 40–62 (2002)

    Google Scholar 

  36. Freeden, W., Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7(3), 215–250 (2003)

    Article  Google Scholar 

  37. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    Book  Google Scholar 

  38. Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. 9, 1–115 (2018)

    Article  Google Scholar 

  39. Freeden, W., Nashed, M.Z.: Ill-posed problems: operator methodologies of resolution and regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 210–314. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  40. Freeden, W., Nashed, M.Z.: Inverse gravimetry as an ill-posed problem in mathematical geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–685. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  41. Freeden, W., Nashed, M.Z.: Inverse gravimetry: background material and multiscale mollifier approaches. GEM Int. J. Geomath. https://doi.org/10.1007/s13137-018-0103-5 (2018)

    Article  Google Scholar 

  42. Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystems Mathematics. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Book  Google Scholar 

  43. Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 315–458. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  44. Freeden, W., Nutz, H.: Mathematik als Schlüsseltechnologie zum Verständnis des Systems “Tiefe Geothermie”. Jahresber. Deutsch. Math. Vereinigung (DMV) 117, 45–84 (2015)

    Google Scholar 

  45. Freeden, W., Schneider, F.: Regularization wavelets and multiresolution. Inverse Prob. 14, 493–515 (1998)

    Article  Google Scholar 

  46. Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)

    Article  Google Scholar 

  47. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vecterial, and Tensorial Setup. Springer, Heidelberg (2009)

    Google Scholar 

  48. Freeden, W., Witte, B.: A combined (Spline-)interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)

    Article  Google Scholar 

  49. Freeden, W., Schneider, F., Schreiner, M.: Gradiometry – an inverse problem in modern satellite geodesy. In: Engl, H.W., Louis, A., Rundell, W. (eds.) GAMM-SIAM Symposium on Inverse Problems: Geophysical Applications, pp. 179–239. SIAM Proceedings, Philadelphia (1997)

    Google Scholar 

  50. Gauss, C.F.: Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des magnetischen Vereins, Göttingen (1838)

    Google Scholar 

  51. Grafarend, E.W.: Six lectures on geodesy and global geodynamics. In: Moritz, H., Sünkel, H. (eds.) Proceedings of the Third International Summer School in the Mountains, Graz Geodetic Institute. pp. 531–685 (1982)

    Google Scholar 

  52. Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. T. Wheelhouse, Nottingham (1838)

    Google Scholar 

  53. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  Google Scholar 

  54. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, London-Boston (1984)

    Google Scholar 

  55. Groetsch, C.W.: Inverse Problems in the Mathematical Science. Vieweg, Braunschweig (1993)

    Book  Google Scholar 

  56. Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D.-Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2007)

    Google Scholar 

  57. Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. GEM Int. J. Geomath. 3, 223–252 (2012)

    Article  Google Scholar 

  58. Gutting, M.: Fast spherical/harmonic spline modeling. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn., pp. 2711–2746. Springer, New York/Heidelberg (2015)

    Chapter  Google Scholar 

  59. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910)

    Article  Google Scholar 

  60. Hackbusch, W.: Entwicklungen nach Exponentialsummen. Technical Report. Max-Planck-Institut für Mahematik in den Naturwissenschaften, Leipzig (2010)

    Google Scholar 

  61. Hackbusch, W., Khoromoskij, B.N., Klaus, A.: Approximation of functions by exponential sums based on the Newton-type optimisation. Technical Report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)

    Google Scholar 

  62. Hadamard, J.: Sur les problémes aux dérivés partielles et leur signification physique. Princeton Univ. Bull. 13, 49–52 (1902)

    Google Scholar 

  63. Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    Google Scholar 

  64. Hanson, R.J.: A numerical methods for solving Fredholm inegral equations of the first kind. SIAM J. Numer. Anal. 8, 616–662 (1971)

    Article  Google Scholar 

  65. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  66. Helmert, F.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie 1. B.G. Teubner, Leipzig (1880)

    Google Scholar 

  67. Helmert, F.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie 2. B.G. Teubner, Leipzig (1884)

    Google Scholar 

  68. Hille, E.: Introduction to the general theory of reproducing kernels. Rocky Mountain J. Math. 2, 321–368 (1972)

    Article  Google Scholar 

  69. Hofmann–Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien/New York (2005)

    Google Scholar 

  70. Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)

    Book  Google Scholar 

  71. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, Heidelberg (1996)

    Book  Google Scholar 

  72. Koch, K.R., Pope, A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull. Géod. 106, 467–476 (1972)

    Article  Google Scholar 

  73. Kotevska, E.: Real earth oriented gravitational potential determination. Ph.D.- Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2011)

    Google Scholar 

  74. Krarup, T.: A contribution to the mathematical foundation of physical geodesy. Danish Geodetic Institute, Report No. 44, Copenhagen (1969)

    Google Scholar 

  75. Laplace, P.S.: Traité de mécanique céleste. Tome 2, Paris (1799)

    Google Scholar 

  76. Laplace, P.S.: Théorie analytique des probabiltés. Livre II, Chap. IV. Paris (1812)

    Google Scholar 

  77. Laplace, P.S.: Théorie analytique des probabiltés. Euvres, Tome VII, p. 353 (1812)

    Google Scholar 

  78. Lavrentiev, M.M.: Some improperly posed problems of mathematical physics. Izdat. Sibirsk. Otdel, Akad. Nauk. SSSR, Novosibirsk, 1962. Englisch Transl., Springer Tracts in Natural Philosophy, vol. 11. Springer, Berlin (1967)

    Google Scholar 

  79. Lauricella, G.: Sulla funzione potenziale di spazio corrispondente ad una assegnata azione sterna. Rend. Lincei XX (1911)

    Google Scholar 

  80. Legendre, A.M.: Nouvelles méthodes pour la détermination des orbites cométes. Paris (1806)

    Google Scholar 

  81. Legendre, A.M.: Analyse des triangles tracés sur la surface dun sphéroide. Tome VII de la I Série des mémoires de lá Académie des Sciences. Paris, 131 (1806)

    Google Scholar 

  82. Locker, J., Prenter, P.M.: Regularization with differential operators. J. Math. Anal. Appl. 74, 504–529 (1980)

    Article  Google Scholar 

  83. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    Book  Google Scholar 

  84. Louis, A.K., Maass, P.: A mollifier method for linear equations of the first kind. Inverse Prob. 6, 427–440 (1989)

    Article  Google Scholar 

  85. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 52. Springer, Berlin, 3. Auflage (1966)

    Google Scholar 

  86. Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: an elastic upgrade for marmousi. Lead. Edge 25, 156–166 (2006)

    Article  Google Scholar 

  87. Meissl, P.A.: A study of covariance functions related to the Earth’s disturbing potential. Department of Geodetic Science, No. 151, The Ohio State University, Columbus (1971)

    Google Scholar 

  88. Meissl, P.A.: Hilbert spaces and their applications to geodetic least squares problems. Boll. Geod. Sci. Aff. 1, 181–210 (1976)

    Google Scholar 

  89. Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D.- Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group, Shaker, Aachen (1999)

    Google Scholar 

  90. Michel, V.: Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics. Appl. Comput. Harm. Anal. (ACHA) 12, 77–99 (2002)

    Article  Google Scholar 

  91. Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces – case study: reconstruction and description of the Earth’s interior. Habilitation Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group, Shaker, Aachen (2002)

    Google Scholar 

  92. Michel, V: Regularized wavelet–based multiresolution recovery of the harmonic mass density distribution from data of the Earth’s gravitational field at satellite height. Inverse Prob. 21, 997–1025 (2005)

    Article  Google Scholar 

  93. Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Prob. 24. https://doi.org/10.1088/0266-5611/24/4/045019 (2008)

    Article  Google Scholar 

  94. Michlin, S.G.: Multidimensional singular integrals and integral equations. Pergamon Press, New York (1965)

    Google Scholar 

  95. Michlin, S.G.: Lehrgang der Mathematischen Physik, 2nd edn. Akademie Verlag, Berlin (1975)

    Google Scholar 

  96. Möhringer, S.: Decorrelation of gravimetric data. Ph.D.-Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2014)

    Google Scholar 

  97. Moritz, H.: Advanced Physical Geodesy. Herbert Wichmann Verlag/Abacus Press, Tunbridge/Karlsruhe (1980)

    Google Scholar 

  98. Moritz, H.: The Figure of the Earth. Theoretical Geodesy of the Earth’s Interior. Wichmann Verlag, Karlsruhe (1990)

    Google Scholar 

  99. Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd ed, vol. 1, pp. 253–290. Springer, New York/Heidelberg (2015)

    Chapter  Google Scholar 

  100. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  101. Nashed, M.Z.: Generalized inverses, normal solvability and iteration for singular operator equations. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 311–359. Academic, New York (1971)

    Chapter  Google Scholar 

  102. Nashed, M.Z.: Aspects of generalized inverses in analysis and regularization. In: Generalized Inverses and Applications, pp. 193–244, Nashed, M.Z. (ed), Academic Press, New York (1976)

    Chapter  Google Scholar 

  103. Nashed, M.Z.: New applications of generalized inverses in system and control theory. In: Thomas, J.B. (ed.) Proceedings of 1980 Conference on Information Sciences and Systems, pp. 353–358. Princeton University Press, Princeton (1980)

    Google Scholar 

  104. Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antennas Propag. 29, 220–231 (1981)

    Article  Google Scholar 

  105. Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations. In: Engl, H., Groetsch, C.W. (eds.) Inverse and Ill-Posed Problems, Band 4. Notes and Reports in Mathematics and Science and Engineering. Academic Press, Boston (1987)

    Google Scholar 

  106. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth Gravitational Model to Degree 2160: EGM2008. General Assembly of the European Geosciences Union, Vienna (2018)

    Google Scholar 

  107. Nashed, M.Z.: In: Siddiqi, A.H., Singh, R.C., Manchanda, P. (eds.) Inverse Problems, Moment Problems and Signal Processing: Un Menage a Trois. Mathematics in Science and Technology, pp. 1–19. World Scientific, New Jersey (2010)

    Google Scholar 

  108. Nashed, M.Z., Scherzer, O.: Inverse Problems, Image Analysis and Medical Imaging (Contemporary Mathematics), vol. 313. American Mathematical Socienty, Providence, R.I. (2002)

    Book  Google Scholar 

  109. Nashed, Z.M., Sun, Q.: Function spaces for sampling expansions. In: Shen, X., Zayed, A.I. (eds.) Multiscale Signal Analysis and Modeling, pp. 81–104. Springer, New York (2013)

    Chapter  Google Scholar 

  110. Nashed, M.Z., Wahba, G.: Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)

    Article  Google Scholar 

  111. Nashed, M.Z., Wahba, G.: Regularization and approximation of liner operator equations in reproducing kernel spaces. Bull. Am. Math. Soc. 80, 1213–1218 (1974a)

    Article  Google Scholar 

  112. Nashed, M.Z., Walter, G.G.: General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Contr. Signals Syst. 4, 363–390 (1991)

    Article  Google Scholar 

  113. Nashed, M.Z., Walter, G.G.: Reproducing kernel Hilbert space from sampling expansions. Contemp. Math. 190, 221–226 (1995)

    Article  Google Scholar 

  114. Parker, R.L.: The theory of ideal bodies for gravity interpretation. Geophys. J. R. Astr. Soc. 42, 315–334 (1975)

    Article  Google Scholar 

  115. Petrini, H.: Sur l’existence des derivees secondes du potentiel. C. R. Acad. Sci. Paris 130, 233–235 (1900)

    Google Scholar 

  116. Pizzetti, P.: Corpi equivalenti rispetto alla attrazione newtoniana asterna. Rend. Lincei XVIII (1909)

    Google Scholar 

  117. Poisson, S.D.: Traité de mécanique 1+2. Bachelier, Paris (1833)

    Google Scholar 

  118. Rieder, A.: Keine Probleme mit Inversen Problemen. Vieweg (2003)

    Google Scholar 

  119. Rummel, R.: Geodesy. In: Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic Press, San Diego (1992)

    Google Scholar 

  120. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman, New York (1988)

    Google Scholar 

  121. Sansò, F.: Internal collocation. Atti Della Academia Nazionale Dei Lincei 16, 4–52 (1980)

    Google Scholar 

  122. Sansò, F., Rummel, R. (eds.): Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, vol. 65. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  123. Sansò, F., Tscherning, C.C.: The inverse gravimetric problem in gravity modelling. In: Kejlsø, E., Poder, K., Tscherning, C.C. (eds.) Festschrift to Torben Krarup, pp. 299–334. Geodaetisk Institute, Copenhagen (1989)

    Google Scholar 

  124. Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)

    Article  Google Scholar 

  125. Skorvanek, M.: The inverse gravimetric problem for the Earth. In: Proceedings of the 4th International Symposium on Geodesy and Physics of the Earth 1980. Veröff. Zentralinst. Physik der Erde, Zentralinstitut Physik der Erde, vol. 63, pp. 464–475 (1981)

    Google Scholar 

  126. Stokes, G.G.: On the variation of gravity at the surface of the Earth. Trans. Cambr. Philos. Soc. 148, 672–712 (1849)

    Google Scholar 

  127. Stokes, G.G.: On the internal distribution of matter which shall produce a given potential at the surface of a gravitating mass. Proc. R. Soc. London 15, 482–486 (1867)

    Article  Google Scholar 

  128. Symes, W.W.: The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University, Houston, Texas. http://www.trip.caam.rice.edu/downloads/downloads.html (2016). Accessed 12 Sept 2016

  129. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)

    Google Scholar 

  130. Tikhonov, A.N.: On the solution of incorrectly formulated problems and the regularization method. Dokl. Akad Nauk SSSR 151, 501–504 (1963)

    Google Scholar 

  131. Torge, W.: Gravimetry. de Gruyter, Berlin (1989)

    Google Scholar 

  132. Tscherning, C.C.: Analytical and discrete inversion applied to gravity data. In: Holm Jacobsen, B. (ed.) Proceedings of the Interdisciplinary Inversion Workshop 1, Methodology and Application Perspectives in Geophysics, Astronomy and Geodesy, pp. 5–8. Aarhus (1992)

    Google Scholar 

  133. Tscherning, C.C., Strykowski, G.: Quasi-harmonic inversion of gravity field data, model optimization in exploration geophysics 2. In: Vogel, A. (ed.) Proceedings of the 5th International Mathematical Geophysics Seminar, pp. 137–154. Vieweg, Braunschweig/Wiesbaden (1987)

    Google Scholar 

  134. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  135. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  136. Weck, N.: Zwei inverse Probleme in der Potentialtheorie. Mitt. Inst. Theor. Geodäsie, Universität Bonn. 4, 27–36 (1972)

    Google Scholar 

  137. Werner, J.: Optimization Theory and Apllications. Vieweg-Verlag, Braunschweig/Wiesbaden (1984)

    Book  Google Scholar 

  138. Xia, X.G., Nashed, M.Z.: The Backus-Gilbert method for signals in reproducing Hilbert spaces and wavelet subspaces. Inverse Prob. 10, 785–804 (1994)

    Article  Google Scholar 

  139. Zidarov, D.P.: Conditions for uniqueness of self–limiting solutions of the inverse problems. Comptes rendus de l’Académie bulgare des Sciences 39, 57–60 (1986)

    Google Scholar 

  140. Zidarov, D.P.: Inverse Gravimetric Problem in Geoprospecting and Geodesy. Developments in Solid Earth Geophysics, vol. 19. Elsevier, Amsterdam (1990)

    Google Scholar 

Download references

Acknowledgements

The first author thanks the “Federal Ministry for Economic Affairs and Energy, Berlin” and the “Project Management Jülich” (corporate manager Dr. S. Schreiber) for funding the projects “GEOFÜND” (funding reference number: 0325512A, PI Prof. Dr. W. Freeden, University of Kaiserslautern, Germany) and “SPE” (funding reference number: 0324061, PI Prof. Dr. W. Freeden, CBM – Gesellschaft für Consulting, Business und Management mbH, Bexbach, Germany, corporate manager Prof. Dr. mult. M. Bauer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freeden, W., Nashed, M.Z. (2018). Inverse Gravimetry: Density Signatures from Gravitational Potential Data. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_96-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics