
FUmanoids Code Release 2012

Daniel Seifert and Raúl Rojas

Institut für Informatik, Arbeitsgruppe Intelligente Systeme und Robotik,
Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany

{dseifert,rojas}@inf.fu-berlin.de
http://www.fumanoids.de

Abstract. Code re-use and sharing between teams are important fac-
tors in the advancement of a RoboCup league. This paper presents the
code release of the Humanoid League KidSize team Berlin United - FU-
manoids. We describe the underlying frameworks and their design prin-
ciples. Abstraction of hardware and independence of the platform allow
the use for different robot types and usage scenarios.

1 Introduction

In this paper we describe the software release of the Humanoid League (HL)
KidSize team Berlin United - FUmanoids. The first section covers the motivation
for code releases in RoboCup, as well as a short history of our team. Section 2
discusses the current code release and its main features, as well as plans for the
next code release. Relevant design decisions, the overall architecture and the
architecture of the underlying frameworks are presented in section 3. Section
4 covers the debug and analysis tool FUremote. Finally, section 5 provides an
overview of the use of the release and offers some conclusions.

1.1 Motivation for Code Release

Interoperability between teams in a RoboCup league is an important factor
for the advancement of the league. Being able to start with a working system
allows new participants to quickly focus on their areas of research. And having
the possibility to integrate another team’s code allows teams to accelerate their
progress without having to reinvent the wheel.

The benefits of interoperability are evident in the Standard Platform League
(SPL), where each team has the same robots and several teams regularly provide
full releases of their code. A notable example is B-Human, who won first place
in 2009-2011. They provide their source code on a yearly basis including an
extensive team report [10,11]. As a result of being able to share code easily, the
SPL was able to strongly push their rules towards the 2050 goal by increasing
team size, reducing color-dependency and enlarging their playing field [9].

On the other hand, teams in the HL usually build their own robots, or at least
modify existing platforms. Significant time is spent on hardware development
and a team’s software is usually incompatible with other teams’ robots due to

S. Behnke et al. (Eds.): RoboCup 2013, LNAI 8371, pp. 600–607, 2014.
© Springer-Verlag Berlin Heidelberg 2014

http://www.fumanoids.de


FUmanoids Code Release 2012 601

the close ties to the specific hardware platform. This severely slows down progress
in the HL. Only in the last two years have the release of the DARwIn-OP [2]
and the recent release of the NimbRo-OP [13] provided means to build upon the
experience of established teams more easily.

1.2 Berlin United - FUmanoids

Berlin United - FUmanoids has been participating in the Humanoid KidSize
League since 2007. Since 2010, the team has cooperated with the SPL team Nao
Team Humboldt, resulting in the multi-league joint-research group Berlin United.

In the first year of the team’s existence, a commercially available robot plat-
form was used. In 2008 this platform was slightly modified and finally completely
replaced by a fully custom-built robot in 2009 [8]. Since then, a variety of robot
models have been designed and successfully1 used in RoboCup competitions.

Over time, it became obvious how important code sharing is and how little
has happened in the Humanoid League in this regards. As a result, we decided
to release our code after RoboCup 2011. The first release was published on
the team’s website in December 2011, thus being one of the first and few code
releases in the league. In December 2012, the updated code from RoboCup 2012
was released [1].

2 Current State and Outlook

Our release includes the sources for FUmanoid and FUremote, a Java application
handling data display, debugging and many additional tasks (section 4).

FUmanoid is the robot control software which runs on the robots. At its
heart is a modular framework developed by Berlin United - NaoTH [5]. It is
incorporated as part of the Berlin United Framework, consisting of hardware
and operating system abstractions as well as a number of service classes. In the
current code release [1] the Berlin United Framework has not yet been separated.
However a standalone version is available online [1]. Utilizing both frameworks,
modules separated into cognition and motion blocks are responsible for handling
robot specific tasks.

Section 3 highlights the technical aspects of the FUmanoid source code. It
is the result of several years of development which gradually changed the code
from being highly specific for the team’s robots to a more generic approach. This
has allowed the Berlin United - Racing Team2 to use the software as the basis
for their autonomous RC car. The Berlin United Framework will also be used in
two other robots at our working group, namely in a quadcopter and in a robot
participating in the DLR’s SpaceBot Cup, supporting inter-project exchange of
code and knowledge.
1 The team won 3rd place in 2007, was runner-up in 2009 and 2010, and placed 4th

in 2011.
2 The Racing Team is a student project participating in the CaroloCup competition,

where an autonomous RC car has to drive on a modelled street and park itself.



602 D. Seifert and R. Rojas

Fig. 1. Overall structure of the control software

For the next release, we are actively working on additional hardware abstrac-
tions and increased functionality of the framework. Development of a generic
actuator interface is almost finished. It will add full support for the SPL’s NAO
robot as well as the DARwIn-OP robot to our software. Work has also started
on proper documentation outside the source code to aid new students to get a
better overall grasp of the system as well as to allow new projects to easily adapt
the source code to their needs.

3 Robot Control Architecture

The robot control software FUmanoid presented in this section consists of mul-
tiple parts. Figure 1 gives an overview of the important components.

3.1 Module Framework

The NaoTH Module Framework [5,6] is a clean standalone implementation of
a blackboard architecture. The historical roots go back to the GermanTeam’s
module framework [12], which results in some similarities of the concepts.

The blackboard holds and manages instances of objects, which are represen-
tations of data that modules can either require (read) or provide (write). Read



FUmanoids Code Release 2012 603

and write access to the blackboard objects is granted based solely on the de-
clared requirements of the module. The resulting dependency chain permits to
automatically calculate an execution order of the modules. As modules are inde-
pendent from each other they can be exchanged easily, which supports to have
concurrent solutions for the same problem.

The modules are executed serially and access data through their module man-
ager’s dedicated blackboard only. Thus, concurrency issues are avoided without
the overhead of using critical sections throughout the code.

The framework simplifies the development process, especially for new students
joining the team. With this approach, no extensive knowledge of the whole soft-
ware stack is required. Instead work can focus on a single, contained module.

3.2 Multi-platform and Multi-sensor Support

A core design principle of the code in the last few years was the requirement to
support different hardware platforms and sensors. This principle arose naturally
out of the yearly changing hardware of the team. Additionally it became neces-
sary to support testing the software outside the robots to accelerate development
and to improve software quality.

Rather than providing a platform interface which acts as a hardware ab-
straction layer (HAL) to a pre-defined platform (e.g. a certain robot model),
our software is heavily based on the concept of exchangeable input and output
devices, i.e. sensors and actuators. Instead of a single HAL, there are specific
hardware abstraction interfaces for specific types of sensors and actuators. Being
able to easily combine these different sensors allows to quickly adjust to changes
in the platform or to assemble new platforms based on pre-existing components.
Furthermore, sensor information can be retrieved from multiple sources3. Repre-
sentations can be pre-filled with ground truth data aquired via e.g. simulators4.

Currently the software only supports robots running the Linux operating sys-
tem. As CPU-specific functionality is avoided, the code works on both ARM and
x86 based CPUs. Due to the multi-sensor approach the code also runs seamlessly
on Linux desktop computers. However, supporting other common operating sys-
tems would be easy. All Linux-specific components are in wrapper classes which
can be easily extended if required.

3.3 Berlin United Framework

The Berlin United Framework incorporates various service classes as well as the
module framework discussed in 3.1. All functionality included in this framework
is independent of the type of robot used, and as such can be used as the basis for
3 One example would be to mix sensors from an actual robot and a simulated one.
4 The code release includes support for our multi-level sensor emulator Sim* [3,7],

which is not part of the code release due to limited resources for its continued
development. However, support for the Simspark simulator has been added and will
be available in the next release of the code.



604 D. Seifert and R. Rojas

one’s own robot software. Standard hardware functionality is included but not
mandatory to use. The service classes offer all common functionality a mobile
platform requires in an easy to use way to simplify development. For example:

– A dedicated thread handles incoming and outgoing communication, sup-
porting multiple remote clients. All communication is based on Protobuf5,
which is an efficient [14] data serialization format that can be extended eas-
ily and accessed with a variety of computer languages. Modules are able to
register for specific incoming Protobuf messages.

– Configuration parameters can be defined in the code and stored and re-
trieved from a Protobuf-serialized file or via network (ref. section 4), as well
as set via the command line.

– An extensive debug interface allows the registration of debug messages of
several types, including text, table, 2D plot and various image representa-
tions. These can be selectively enabled. While disabled, run-time overhead
is negligible. Debug output, including images, can be streamed to several re-
mote instances, allowing multiple users to debug or inspect different aspects
of the robot simultaneously.

– Log files can be created, consisting of all or select representations from each
execution cycle. These log files can be used in subsequent runs to populate
representations, allowing to debug modules or compare algorithms against
each other for the same input data set.

3.4 Motion and Cognition

So far, we discussed the generic capabilities included in our code release. How-
ever the code release also includes the HL specific soccer code of our team. We
separated our modules into a cognition and a motion block (figure 2).

The Cognition module manager is executed when a new camera image is re-
ceived and thus runs at most 30 times per second. At first the image processing
modules run and retrieve information like the position of the ball, the goal and
the obstacles from the image, as well as line segments. This data is then classi-
fied, e.g. field lines and field line features (crossings, etc) are extracted. Various
modelling modules try to model the world and finally behavior modules based
on XABSL [4] decide on the actions the robot should take. This sequence follows
the Sense-Think-Act paradigm.

The Motion module manager runs at 100 Hz. It is responsible for hardware
control, primarily interfacing with sensors (except camera) and actuators. An
execution cycle starts with reading out sensors and actuators and managing the
various information to handle sensor fusion and related tasks, e.g. calculation
of camera height based on the robot’s kinematics. Depending on the type of
motion requested by the cognition, modules are selected which perform keyframe
motions like standing up, or which calculate and set the walking trajectories.

Communication between the two module blocks is achieved by event notifica-
tions. At the end of each manager’s cycle, specific representations are sent and
5 https://code.google.com/p/protobuf

https://code.google.com/p/protobuf


FUmanoids Code Release 2012 605

Fig. 2. Core Tasks in the Module Managers

the other manager injects them into its own representations at the next execu-
tion cycle. This is a simple yet effective method of sharing data and distributing
commands with negligible overhead.

4 Remote Control and Debugging

The code release also includes our debug and control tool FUremote. It is based
on Eclipse RCP and provides most of its features by means of plugins which
allows to switch out features or extend functionality easily, for example when
the software is used by other projects.

For the most part, FUremote is developed in a way that is agnostic to the
specific hardware and environment being used. Plugins retrieve the relevant in-
formation from the robots, e.g. the list of debug options, the configuration keys or
the available camera settings. This makes it a versatile tool supporting changes
to the robot’s hardware and software.

Figure 3 shows a possible setup of the tool. On the top-left, the robots cur-
rently online are shown including relevant status information like battery level.
Below, the Debug plugin lists the available debug options, four of which are
active and displaying information in various ways.

Other notable plugins available allow to configure the camera settings, modify
configuration parameters, change the robot’s game state, visualize the behaviour
status of the robot, interact with the servos and record and preview keyframe
motions.



606 D. Seifert and R. Rojas

Fig. 3. Screenshot of the FUremote tool

5 Conclusion

We presented our code release consisting of the FUremote tool, as well as FU-
manoid and its frameworks. The Berlin United Framework is actively used in
our humanoid RoboCup team as well as in an autonomous RC car. It will also
be used for a quadcopter and a robot participating in the SpaceBot Cup. Its
platform-independence and modularity makes it suitable for a variety of robots
within and outside the RoboCup community. We expect increased impact when
the NAO und DARwIn-OP support is fully integrated in the next code release.

The code release can be downloaded at http://www.fumanoids.de/code.

Acknowledgements. The code released is based on many years of develop-
ment by the members and students of the Intelligent Systems and Robotics
group at Freie Universität Berlin. More information about the team and its
members, as well as publications and details to the robots is available online at
http://www.fumanoids.de.

References

1. FUmanoids: FUmanoids Code Release (2012),
http://www.fumanoids.de/publications/coderelease

2. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.: Development of open humanoid
platform DARwIn-OP. In: Proceedings of SICE Annual Conference, SICE 2011,
pp. 2178–2181 (2011)

http://www.fumanoids.de/code
http://www.fumanoids.de
http://www.fumanoids.de/publications/coderelease


FUmanoids Code Release 2012 607

3. Heinrich, S.: Development of a Multi-Level Sensor Emulator for Humanoid Robots.
Diploma thesis, Freie Universität Berlin, Institut Mathematik und Informatik,
Deutschland (2012)

4. Loetzsch, M., Risler, M., Jungel, M.: Xabsl - a pragmatic approach to behavior
engineering. In: 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5124–5129 (2006)

5. Mellmann, H., Xu, Y., Krause, T.: Common Platform Architecture - A Sim-
ple and Clean Architecture for Participation in SPL and Simulation 3D (2011),
http://www.naoth.de/projects/multi-platform-robot-controller

6. Mellmann, H., Xu, Y., Krause, T., Holzhauer, F.: NaoTH Software Architecture
for an Autonomous Agent. In: Proceedings of the International Workshop on Stan-
dards and Common Platforms for Robotics (SCPR 2010), pp. 316–327 (2010)

7. Mielke, S.: Kamerabildrekonstruktion der Simulationsumgebung für humanoide
Fußballroboter. Diploma thesis, Freie Universität Berlin, Institut für Mathematik
und Informatik, Deutschland (2012)

8. Mobalegh, H.: Development of an Autonomous Humanoid Robot Team. Ph.D.
thesis, Freie Universität Berlin (2011)

9. RoboCup SPL Technical Committee: RoboCup Standard Platform League (Nao)
Rule Book (2013),
http://www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf

10. Röfer, T., Laue, T., Müller, J., Bartsch, M., Batram, M.J., Böckmann, A.,
Lehmann, N., Maß, F., Münder, T., Steinbeck, M., Stolpmann, A., Taddiken, S.,
Wieschendorf, R., Zitzmann, D.: B-Human Team Report and Code Release 2012
(2012),
http://www.b-human.de/wp-content/uploads/2012/11/CodeRelease2012.pdf

11. Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,
C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human Team Report
and Code Release 2011 (2011),
http://www.b-human.de/downloads/bhuman11_coderelease.pdf

12. Röfer, T., Brose, J., Göhring, D., Jüngel, M., Laue, T., Risler, M.: GermanTeam
2007 - The German national RoboCup team. In: RoboCup 2007: Robot Soccer
World Cup XI Preproceedings, RoboCup Federation (2007)

13. Schwarz, M., Schreiber, M., Schueller, S., Missura, M., Behnke, S.: NimbRo-OP Hu-
manoid TeenSize Open Platform. In: IEEE-RAS International Conference on Hu-
manoid Robots Proceedings of 7th Workshop on Humanoid Soccer Robots (2012)

14. Sumaray, A., Makki, S.K.: A comparison of data serialization formats for optimal
efficiency on a mobile platform. In: Proceedings of the 6th International Conference
on Ubiquitous Information Management and Communication, ICUIMC 2012, pp.
48:1–48:6. ACM, New York (2012),
http://doi.acm.org/10.1145/2184751.2184810

http://www.naoth.de/projects/multi-platform-robot-controller
http://www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf
http://www.b-human.de/wp-content/uploads/2012/11/CodeRelease2012.pdf
http://www.b-human.de/downloads/bhuman11_coderelease.pdf
http://doi.acm.org/10.1145/2184751.2184810

	FUmanoids Code Release 2012
	1 Introduction
	1.1 Motivation for Code Release
	1.2 Berlin United - FUmanoids

	2 Current State and Outlook
	3 Robot Control Architecture
	3.1 Module Framework
	3.2 Multi-platform and Multi-sensor Support
	3.3 Berlin United Framework
	3.4 Motion and Cognition

	4 Remote Control and Debugging
	5 Conclusion
	References




