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Abstract. This paper proposes a dissimilarity function that is useful
for analyzing and learning the opponent’s strategies implemented in a
RoboCup Soccer game. The dissimilarity function presented here identi-
fies the differences between two instances of the opponent’s deployment
choices. An extension of this function was developed to further identify
the differences between deployment choices over two separate time inter-
vals. The dissimilarity function, which generates a dissimilarity matrix,
is then exploited to analyze and classify the opponent’s strategies using
cluster analysis. The classification step was implemented by analyzing
the opponent’s strategies used in set plays captured in the logged data
obtained from the Small Size League’s games played during RoboCup
2012. The experimental results showed that the attacking strategies used
in set plays may be effectively classified. A method for learning an op-
ponent’s attacking strategies and deploying teammates in advantageous
positions on the fly in actual games is discussed.

1 Introduction

Robotic soccer in the RoboCup Small Size League (SSL) involves a competition
between teams of at most six robots on a 6050 mm by 4050 mm field. Two cam-
eras are positioned 4 m above the field to collect photographs of the field every
1/60th of a second. The photographs are sent to a vision computer dedicated to
image processing. The vision computer calculates the positions of the robots and
the ball on the field and sends these coordinates to each team’s computer. Each
team then uses this information to compute the next positions each robot will
move to based on their strategy. These positions are then sent to the robots via
radio communication. A referee box computer, which controls the progression of
the game, sends messages such as ‘start throw-in’, ‘start corner kick’, etc. to each
team’s computer. The game advances automatically without the intervention of
any person except for the referees and the person controlling the referee box.

The moving speeds of robots in the SSL have increased year-on-year. For in-
stance, the champion team in the RoboCup 2012 moved its robots at a maximum
speed of 3.5 m/s [1], and the champion team passed the ball at speeds exceed-
ing 4 m/s. In this environment, predicting the behavior of an opponent is very
important.
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In recent SSL games, each team has tended to decide on a strategy depending
on the positions and velocities of the teammates, the opponents, and the ball.
The referee box’s signals are also used to select a strategy. By contrast, in human
soccer, each player decides his/her behavior using, in addition to the above four
factors, the history of play such as “how the opponents have played during
the current game.” It is reasonable to expect that a robotic soccer game may
also play out by selecting an appropriate strategy based on an analysis of the
opponent’s strategies or behaviors during the previous game plays.

In an effort to analyze and learn from an opponent’s strategies, a dissimilarity
function that identified differences between an opponent’s deployment choices at
two different instances was developed. The dissimilarity function was then ex-
tended to identifying the differences between deployment choices made during
two different time intervals. The opponent’s strategies were then analyzed by
using this dissimilarity function. The dissimilarity matrix generated from the
dissimilarity function was used to perform a cluster analysis to classify the op-
ponent’s strategies. This method was applied to the data logged during SSL
games played during the RoboCup 2012. This method was shown to be able to
effectively classify the attacking strategies during set plays. A method for learn-
ing an opponent’s attacking strategies and deploying teammates in advantageous
positions on the fly in actual games is discussed.

2 Related Work

Bowling et al. [2] proposed a method for implementing an opponent-adaptive
play selection. This method, which has been used in the SSL games, is formulated
in the frame of an experts problem or a k-armed bandit problem. The method
selects an effective play from a playbook based on the “regret” measure1. The
selected play is then given an appropriate reward corresponding to the result of
the play: success, failure, completion, or abort. The regret measure is updated
based on the accumulated reward of each play.

Trevizan and Veloso [3] have proposed a method for comparing the strategies
of teams played in the SSL. In their method, a team’s strategy is represented
as an episode matrix, the elements of which are the means and the standard
deviations of variables over the time segment S in the time series T , where T
represents a game. They selected 23 variables for analysis, including the distance
between each robot and the ball. A similarity function s(·, ·) was then defined
using the matrices to represent the closeness between two episodes. The method
was applied during defense episodes, and they discussed the closeness of the
defense strategies used by the two teams.

Visser and Weland [4] proposed a method for classifying an opponent’s behav-
ior based on a decision tree using the data logged by the RoboCup Simulation
League. They classified, for instance, the behaviors of a goalkeeper into three

1 The regret is the amount of additional reward that could have been received if an
expert selection algorithm had known which expert would be the best and had chosen
that expert at each decision point[2].
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categories: the goalkeeper backs up, the goalkeeper stays in the goal, and the
goalkeeper leaves the goal. They also analyzed the pass behaviors of the oppo-
nents in a similar way.

3 Comparison of Strategies

In the proposed dissimilarity method, an opponent’s strategies were first clas-
sified using a dissimilarity function that quantifies the difference between two
deployment decisions made by an opponent at times t1 and t2. The dissimilarity
function was defined on a field coordinate system having an origin at the center
of the field, with the x-axis pointing toward the center of the opponent’s goal
mouth and the y-axis representing the center line.

Let Ri(tk) be the coordinates of the opponent i at time tk (k = 1, 2). Assume
that m opponents are present on the field at time t1 and n opponents at time
t2. (Robots are numbered from 1 to m at time t1 and from 1 to n at time t2.)
The dissimilarity function d is then defined as follows:

d(t1, t2) = min
U∈{U1,U2}

{
min
σ∈S6

√
trace(F (U)Pσ)

}
, (1)

U1 =

[
1 0
0 1

]
, U2 =

[
1 0
0 −1

]
,

F (U) = [fij ],

fij =

{
‖URi(t1)−Rj(t2)‖2 (1 ≤ i ≤ m, 1 ≤ j ≤ n)

Δ2 (otherwise)
,

where S6 is the symmetric group of degree six, Pσ is the permutation matrix
of a permutation σ, and U2 is the matrix describing a reflection transformation
through the x-axis used to change the sign of the y-coordinate. F is a 6×6 matrix,
the element fij of which is the Euclidean distance between the position of the
opponent i at time t1 and the position of the opponent j at time t2, if robots i
and j are on the field. If one (or neither) robot is not on the field, this element is
assigned the value Δ2. Δ indicates a virtual distance and is assigned a constant
value here. The selection of Δ requires a careful process that will be discussed
elsewhere. d indicates the sum of the distances between all corresponding robots
when the minimal distance mapping between robots i at t1 and j at t2, for all i
and j, is achieved.

The opponent’s strategy is assumed to rely on the type of skill attributed to
each robot. A strategy is implemented based on the skill assigned to each robot,
which can vary between t1 and t2. The dissimilarity function d is expected to
function as designed, even in the event that the robots are permuted. In the
context of robotic soccer, all strategies may be assumed to be symmetric along
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the x-axis2, and the reflection U2 given in Equation (1) can be considered. The
ball and teammates’ positions are excluded from Eq. (1) for the following reasons:

– The robots’ positions depend on the ball so that relative positions between
robots are sufficient to characterize the behavior on the field;

– The positions of the teammates can negatively affect the learning process
because the behavior of the teammates are affected by the learning process.

Next, Eq. (1) was used to define a dissimilarity function d1(·, ·, ·) between the
deployment choice of an opponent at time t1 and a set of deployment choices
made during a time interval [Ts, Te], as follows:

d1(t1, Ts, Te) = min
t∈[Ts,Te]

d(t1, t). (2)

Equation (2) may be used to define a dissimilarity function d2(·, ·, ·, ·) between
two sets of deployments: one for the time interval [T

(i)
s , T

(i)
e ] and the other for

[T
(j)
s , T

(j)
e ], as follows:

d2(T
(i)
s , T (i)

e , T (j)
s , T (j)

e ) = min
t∈[T

(i)
s ,T

(i)
e ]

d1(t, T
(j)
s , T (j)

e ). (3)

Equation (3) shows the dissimilarity function between the two most similar
deployment choices in the two distinct sets. The opponent’s strategies may then
be classified by applying Eq. (3) to the sets of deployments. The next section
discusses the use of cluster analysis in classifying the opponent’s strategies based
on the dissimilarity function given by Eq. (3).

4 Cluster Analysis

Consider the N sets of deployment choices, each of which comprises a set of
deployments made within a time interval. Equation (3) is then applied to any
two sets in the N sets of deployments to calculate a dissimilarity matrix of size
N ×N , the elements of which are the dissimilarities between the set plays. The
matrix may be regarded as a proximity matrix, and a cluster analysis may be
used to classify the opponent’s strategies.

4.1 Clustering Methods

Many clustering methods are available for use in cluster analysis[8]. Typical
methods include:

k-means Algorithm. The k-means algorithm is a cluster analysis method that
aims to partition n observations into k clusters such that each observation
belongs to the cluster characterized by the nearest mean. This creates a
partitioning of the data space into Voronoi cells.

2 In human soccer, a player may have his/her strong wing; however, in robotic soccer
(especially in the SSL), none of the robots has a strong wing, in general. Therefore,
it is generally acceptable to assume symmetric positions.
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Ward’s Method. Ward’s method is a hierarchical cluster analysis method that
shares many of the features of variance analysis. A linkage (of clusters) func-
tion, which specifies the distance between two clusters, is computed as an
increase in the “error sum of squares” (ESS) after two clusters are fused into
a single cluster. Ward’s Method seeks to select successive clustering steps
that minimize the increase in ESS at each step.

Group Average Clustering. The group average clustering method is a hi-
erarchical method in which the distance between two clusters is calculated
based on the average distance between all pairs of objects in the two different
clusters.

Both the k-means algorithm and Ward’s method are practical methods; how-
ever, they cannot be used to calculate the centroid of a cluster. In this problem,
it is difficult to calculate the centroid because each element in a cluster denotes
a continuous deployment choice. The group average clustering method, on the
other hand, calculates the distance between objects (deployments in this case),
and this distance is sufficient for implementing the clustering method. The group
average clustering method was therefore chosen.

4.2 Estimating the Number of Clusters

The group average clustering method creates a hierarchical structure of clusters;
however, the method does not estimate the number of clusters. To do so, the
Davies–Bouldin index (DBI)[5] was used. The DBI for K clusters is defined as
follows:

DB(K) =
1

K

K∑
i=1

max
j �=i

Si + Sj

Mij
, (4)

where Mij is a measure of the separation between two clusters Ci and Cj , and
Si is a measure of cohesion within a cluster Ci. Mij and Si may be defined
freely under some constraints[5]. The optimal number of clusters is given by
K, which is selected to minimize DB(K) over the range of K identified by some
criterion, for example, using Sturges’ formula . The definition of the DBI requires
the judicious selection of an appropriate range for K because DB(K) approaches
0 as the number of single object clusters increases.

Equation (3) is then used to define the separation Mij and cohesion Si as
follows:

Si =
1

|Ci|(|Ci| − 1)

∑
Xk∈Ci

{ ∑
Xl∈Ci,Xl �=Xk

d2(T
(k)
s , T (k)

e , T (l)
s , T (l)

e )

}
,

Mij =
1

|Ci||Cj |
∑

Xk∈Ci

∑
Xl∈Cj

d2(T
(k)
s , T (k)

e , T (l)
s , T (l)

e ),

where Si is the mean distance between any two objects in Ci and Mij is the dis-
tance between Ci and Cj , computed using the group average clustering method.
The values of Si and Mij satisfy the constraints given in [5].



164 K. Yasui et al.

5 Experimental Results

Many goals in the SSL games are scored based on the set plays, such as the
identification of a throw-in, corner kick, or goal kick. Each team implements
a variety of strategies in the set plays. The method proposed in the previous
sections was applied here to the set plays executed by the teams participating
in the RoboCup 2012 games in an effort to analyze and classify the opponents’
strategies.

Let Xi be a set of deployment choices made during the i-th set play (1 ≤ i ≤
N). The time interval surrounding Xi is [T

(i)
r , T

(i)
e ], where T

(i)
r is the time the

team receives a start command for the set play from the referee box and T
(i)
e is

the time at which a kick is carried out in the set play.

T
(i)
s can be defined as

T (i)
s = max(T (i)

e − Tbehavior, T
(i)
r ), (5)

where Tbehavior is a constant that specifies the time at which the robot takes
an action. Small Tbehavior values are sufficient for an expert team because their
robots move fast. Somewhat larger Tbehavior values absorb the dispersion of the
set plays based on a strategy. For unfamiliar teams, the assumption of a small
Tbehavior value is recommended. In this paper, Tbehavior is set to 1.0 sec.

Equation (3) was used to compute the dissimilarity functions

d2(T
(i)
s , T (i)

e , T (j)
s , T (j)

e ), (1 ≤ i ≤ N, 1 ≤ j ≤ N). (6)

A dissimilarity matrix3 was then generated, and a dendrogram was calculated
based on the group average clustering. Finally, the number of clusters present
was estimated using Equation (4). The opponents’ strategies used in the set plays
among the K strategies were then classified. The following Sturges’ formula[6]
was used to estimate the range of K:

1 ≤ K ≤ �log2 N + 1�, (7)

where �x� is the ceiling function of x.

5.1 Classifying RoboDragons’ Strategies

First, the RoboDragons’ strategies (our team’s strategies) were classified using
the proposed method. RoboDragons used four attacking strategies during the set
plays that took place in the RoboCup 2012 world championship. These strategies
were denoted Ai, (1 ≤ i ≤ 4). The RoboDragons’ simulation system4 was used

3 In the experiments described in this section, Δ in Eq. (1) was not used because six
robots on each team were always on the field.

4 The proposed method was first applied to the real games played during the RoboCup
2012. These games were easy to classify because the parameter values used to im-
plement the strategies were fixed. The simulation system was then used to execute
set plays in which the values of the parameters were varied.
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Fig. 1. Dendrogram (RoboDragons)

Fig. 2. Davies–Bouldin index (RoboDragons)

to execute a pseudo-game in-
volving RoboDragons (Blue)
vs. RoboDragons (Yellow)5.
Twenty-four set plays in to-
tal were executed. One strat-
egy was used in each set play.

Each strategy was used
six times over the course of
the 24 games. According to
the rules of the SSL, the
ball was placed at the (x, y)
coordinates at the start of
a set play, where the y-
coordinate is 1915 mm and
the x-coordinate is randomly
selected from within a range
of values that permits execu-
tion of the set play.

Figure 1 shows a dendro-
gram of the experimental re-
sults obtained6, and Figure 2
shows the Davies–Bouldin in-
dex. The number of clusters
fell within the range 1 ≤ K ≤
6, according to Equation (7).
Figure 2 shows that an esti-
mate of K = 5 in this case
was reasonable. The dendro-
gram shown in Fig. 1 was cut
off at the height at which the number of clusters reached five to obtain the
following five clusters.

C1 = {X1, X2, X3, X4, X5, X6}
C2 = {X7, X8, X9, X10, X11, X12}
C3 = {X13, X14, X15}
C4 = {X16, X17, X18}
C5 = {X19, X20, X21, X22, X23, X24}

The set plays implemented in C1 used the A1 strategy, C2 used A2, and C5

used A4. The set plays characterized by the strategy A3 could be classified as
belonging to one of two clusters, C3 and C4. If K = 4, however, then C3 and C4

5 Blue and Yellow are the colors used to identify the teams in the SSL.
6 The dendrograms in this paper were drawn using the R statistical software package
(http://www.r-project.org/).

http://www.r-project.org/
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were unified, and the clusters correctly separated the strategies. These results
revealed the utility of the proposed method. Figure 1 showed that the strategy
A4 was easier to identify than the other strategies because the height of C5 was
the smallest. (Strategy A3 was characterized as the height of (C3 ∪ C4).)

5.2 Classifying the Opposing Teams’ Strategies
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Fig. 3. Dendrogram (Skuba)

This section discusses at-
tempts to classify the op-
posing teams’ strategies. The
data logged during the final
game of the RoboCup 2012, in
which Skuba (Blue) opposed
ZJUNlict (Yellow), were ana-
lyzed here. In the game, 62 set
plays were restarted from 10
cm inside of the touch bound-
ary crossed by the ball. Of
these set plays, 37 were imple-
mented by Skuba and 25 were
implemented by ZJUNlict. Figures 3 and 4 show the dendrograms of the set
plays implemented by Skuba and ZJUNlict, respectively. Equation (4) was used
to estimate the number of clusters: K = 5 for Skuba, and K = 6 for ZJUNlict.
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Fig. 4. Dendrogram (ZJUNlict)

The analysis of Skuba’s
strategies will be discussed
first. Figure 5 shows the clas-
sified results. Each image il-
lustrates a deployment choice
made immediately after the
kick was taken during a set
play. In these images, gen-
erated by our logged data
review system, the sizes of
the ball and robots are en-
larged, and the number in
each robot is the robot’s
ID. Note that the attacking
direction changed from set
play X17 because the teams
changed sides after half time.

An analysis of the clusters readily identified the strategies used. The strategies
were found to be characterized as follows:

– C1 encompassed a strategy in which the ball was kicked directly toward the
goal without passing between robots.

– C2 encompassed a strategy in which the ball was passed to a teammate at
the far side of the opponent’s goal area after a corner kick had been taken.
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– C3 encompassed a strategy in which the ball was passed to the teammate at
the near side of the center line after a throw-in had been taken.

– C4 encompassed a strategy in which the ball was passed to the teammate at
the far side of the field. This strategy resembled the strategy C1.

– C5 encompassed a strategy in which the ball was passed to the teammate at
the center of the field.

The analysis of ZJUNlict’s strategies will be discussed next. The following
classification results were obtained from this analysis. (The corresponding images
are omitted due to limitations on the article space.)

C1 = {X1, X2, X10, X19, X23}
C2 = {X3, X4, X6, X11, X12, X14, X15, X16, X18, X20, X21, X24, X25}
C3 = {X5}
C4 = {X7, X13, X17, X22}
C5 = {X8}
C6 = {X9}

The strategies could be characterized as follows:

– C1 encompassed a strategy in which the ball was passed to the teammate at
the far side of the opponent’s goal area.

– C2 encompassed a strategy in which short passes were made to the teammate
located along the direction of the goal. The team used this strategy many
times.

– C3 was similar to strategy C1.
– C4 encompassed a strategy in which the ball was passed to the teammate at

the far side of the field after a throw-in had been taken on the opponent’s
side.

– C5 was similar to strategy C4.
– C6 appeared to be similar to strategy C4, although the placement of two

robots on opposite sides of the ball may have led to the use of another
strategy.

The results of this experiment revealed that the classification of an opponent’s
strategies was possible.

6 Application: On-line Learning

Section 5 demonstrated that an opponent’s strategies could be classified using the
method proposed here. This method was applied to an on-line learning algorithm
to assist in selecting an advantageous action during the opponent’s (N + 1)th
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C1 =

{X1, X4, X6, X7,

X10, X14, X17, X25, X26,

X30}

C2 =

{X2, X3, X5,

X16, X21, X22, X27, X29}

C3 =

{X8, X15, X18, X31,

X37}

C4 =

{X9, X11, X13,

X19, X20, X23, X24, X28,

X32, X33, X34, X35, X36}

C5 =

{X12}
Fig. 5. Results obtained from classifying Skuba’s set plays. (In the figure, the Blue
team’s robots are shown as black circles and the Yellow team’s robots are shown in
white. Figure 6 uses the same color convention.)
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4 seconds before

kicking

3 seconds before

kicking

2 seconds before

kicking

1 second before

kicking

the moment of

kicking

Fig. 6. Positions of robots, every second in set play X37

behavior, based on the classification results obtained from the N behaviors ex-
ecuted previously. As an example, consider the process of learning during a set
play in which the game is restarted by placing the ball near the touch boundary.

A dissimilarity function d3 is defined between the deployment choice Xj in Ci

and the current deployment choice X as follows:

d3(t, Ci) =
1

|Ci|
∑

Xj∈Ci

d1(t, T
(j)
r , T (j)

e ). (8)

This equation gives the mean value of the dissimilarity between X and Xj for
each Xj in Ci. For all clusters obtained thus far, Equation (8) is computed to
estimate the most likely deployment strategy selected by the opponent. The real-

time computation is easy. Equation (8) used T
(j)
r instead of T

(j)
s , as defined in

Equation (5) because the action immediately prior to the kick as well as the
precursors to the action taken in the strategy were of interest.

The data logged during the final game of the 2012 RoboCup competition were
used to compute Eq. (8) for the 37th set play X37 of Skuba, assuming that the
set plays X1...X36 could be classified as described in Section 5.2 (excluding X37

from C3). Figure 7 shows the obtained results, and Figure 6 shows the positions
of the robots every second during the set play X37.

0 

2000 

4000 

6000 

8000 

4 3 2 1 0

d3
( 

t, 
C

i )

t seconds before kicking

C1
C2
C3
C4
C5

Fig. 7. The values obtained from Eq. (8). Duration:
from the receipt of a start signal for a set play (from
the referee box) to the completion of the kick.

Because the value of d3(t, Ci)
was high for C1 and C4 4
seconds prior to kicking, the
strategy executed here was
not selected from among these
strategies. Clusters C2 and C3

had low values of d3(t, Ci) be-
tween 4 seconds and 2 sec-
onds prior to kicking; how-
ever, the value for C2 began
to increase 2 seconds prior
to kicking. Skuba’s ID3 robot
dashed out at this time. One
second prior to kicking, the
ID8 robot dashed out. Only
C3 had a low value of d3(t, Ci)
after receiving the signal from
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the referee box. These observation, in conjunction with Eq. (8), suggested that
the strategy corresponding to C3 would be executed once again.

According to the strategy corresponding to C3, the ball was passed to the
robot that dashed out from the defense area in all cases. Therefore, in X37,
the ID8 robot was expected to shoot, and the ID3 robot, which dashed out 2
seconds prior to kicking, would be a bait robot. From this analysis, marking the
ID8 robot 2 or 4 seconds prior to kicking will break the opponent’s strategy.

7 Concluding Remarks

A dissimilarity function d that measures the differences between two different
deployment choices in an SSL game has been designed. Additionally, a method
for classifying and analyzing an opponent’s strategies based on a clustering al-
gorithm has been proposed. This method was applied to simulated games to
demonstrate the utility of the method. Finally, the method was applied to the
final game of the 2012 RoboCup SSL to show that an unknown strategy could be
accurately classified. It has been demonstrated that the method could be used
to an identify opponent’s strategies during a game on the fly and in real time.
Future work will further improve the method described here.
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