Skip to main content

Behavioural and Physiological Reactions to Environmental Variation in Bird Migration: a Review

  • Conference paper
Avian Migration

Abstract

Many features of the migration of passerine birds are endogenously programmed and have a strong genetic basis. At least in inexperienced migrants, the general seasonal course of migration is endogenously controlled, such as the onset, the temporal pattern, the direction of migration and the seasonal pattern of energy stores. This leads to the conclusion that an endogenous spatiotemporal migration programme guides inexperienced migrants from their place of birth to their first winter quarters (summarized in Berthold 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aborn DA, Moore FR (1997) Pattern of movement by summer tanagers (Piranga rubra) during migratory stopover: a telemetry study. Behaviour 134: 1077–1100

    Article  Google Scholar 

  • Ã…kesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47: 140–144

    Article  Google Scholar 

  • Akesson S, Alerstam T, Hedenström A (1996a) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27: 95–102

    Article  Google Scholar 

  • Ã…kesson S, Karlsson L, Walinder G, Alerstam T (1996b) Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol 38: 293–302

    Article  Google Scholar 

  • Akesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61: 181–189

    Article  PubMed  Google Scholar 

  • Alerstam T, Lindström Ã… (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 331–351

    Chapter  Google Scholar 

  • Bairlein F (1983) Habitat selection and associations of species in European passerine birds during southward, post-breeding migrations. Ornis Scand 14: 239–245

    Article  Google Scholar 

  • Bairlein F (1985a) Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia 66: 141–146

    Article  Google Scholar 

  • Bairlein F (1985b) Efficiency of food utilization during fat deposition in the long-distance migratory garden warbler (Sylvia borin). Oecologia 68: 118–125

    Article  Google Scholar 

  • Bairlein F (1986) Spontaneous, approximately semimonthly rhythmic variations of body weight in the migratory garden warbler (Sylvia borin Boddaert). J Comp Physiol B 156: 859–865

    Article  Google Scholar 

  • Bairlein F (2000) Photoperiode and Nahrungsangebot beeinflussen zugzeitliche Fettdeposition. Jahresber Inst Vogelforsch 4: 5

    Google Scholar 

  • Bairlein F, Gwinner E (1994) Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Annu Rev Nutr 14: 187–215

    Article  PubMed  CAS  Google Scholar 

  • Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K (2000) Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc Lond B 267: 191–195

    Article  CAS  Google Scholar 

  • Bautista LM, Tinbergen J, Wiersma P, Kacelnik A (1998) Optimal foraging and beyond: how starlings cope with changes in food availability. Am Nat 152: 543–561

    Article  PubMed  CAS  Google Scholar 

  • Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca). In: Ouellet H (ed) Proc 19th Int Ornithol Congr, Ottawa. University of Ottawa Press, Ottawa, pp 1955–1962

    Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman and Hall, London

    Google Scholar 

  • Bibby CJ, Green RE (1980) Foraging behaviour of migrant pied flycatchers, Ficedula hypoleuca, on temporary territories. J Anim Ecol 49: 507–521

    Article  Google Scholar 

  • Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12: 1–12

    Article  Google Scholar 

  • Biebach H (1985) Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41: 695–697

    Article  Google Scholar 

  • Biebach H (1998) Phenotypic organ flexibility in garden warblers Sylvia borin during long-distance migration. J Avian Biol 29: 529–535

    Article  Google Scholar 

  • Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 352–367

    Chapter  Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of bodymass, fat, foraging and stopover period in trans-sahara migrating passerine birds. Oecologia 69: 370–379

    Article  Google Scholar 

  • Bolshakov CV, Bulyuk VN (1999) Time of nocturnal flight initiation (take-off activity) in the European robin, Erithacus rubecula, during spring migration: direct observation between sunset and sunrise. Avian Ecol Behav 2: 51–74

    Google Scholar 

  • Bolshakov CV, Bulyuk VN (2001) New comprehensive systematic data concerning the time of nocturnal departure in some passerine migrants in autumn. Ring 23: 131–137

    Google Scholar 

  • Bruderer B (1997) The study of bird migration by radar. Part 2: major achievements. Naturwissenschaften 84: 45–54

    Article  CAS  Google Scholar 

  • Bruderer B, Jenni L (1990) Migration across the Alps. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 60–77

    Chapter  Google Scholar 

  • Bruderer B, Liechti F (1998a) Étude des migrations transméditerranéennes au moyen du radar. Directions de la migration nocturne en automne près de Malaga et à Majorque. Nos Oiseaux Suppl 2: 51–60

    Google Scholar 

  • Bruderer B, Liechti F (1998b) Flight behaviour of nocturnally migrating birds in coastal areas — crossing or coasting. J Avian Biol 29: 499–507

    Article  Google Scholar 

  • Bruderer B, Liechti F (1999) Bird migration across the Mediterranean. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Johannesburg, pp 1983–1999

    Google Scholar 

  • Bruderer B, Underhill LG, Liechti F (1995) Altitude choice by night migrants in a desert area predicted by meteorological factors. Ibis 137: 44–55

    Article  Google Scholar 

  • Bruderer B, Liechti F, Kestenholz M, Peter D, Spaar R, Stark H, Steuri T (2000) Vogelzugstudien mit Zielfolgeradar im Süden Israels. Ornithol Beob 97: 21–44

    Google Scholar 

  • Butler PJ, Bishop CM (2000) Flight. In: Whittow GC (ed) Sturkie’s avian physiology, 5th edn. Academic Press, London, pp 391–435

    Chapter  Google Scholar 

  • Carmi N, Pinshow B, Porter WP, Jaeger J (1992) Water and energy limitations on flight duration in small migrating birds. Auk 109: 268–276

    Article  Google Scholar 

  • Carpenter FL, Hixon MA, Temeles EJ, Russell RW, Paton DC (1993) Exploitative compensation by subordinate age-sex classes of migrant rufous hummingbirds. Behav Ecol Sociobiol 33: 305–312

    Google Scholar 

  • Cherry JD (1982) Fat deposition and length of stopover of migrant white-crowned sparrows. Auk 99: 725–732

    Google Scholar 

  • Cimprich DA, Moore F (1999) Energetic constraints and predation pressure during stopover. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Johannesburg, pp 834–846

    Google Scholar 

  • Cochran WW, Kjos CG (1985) Wind drift and migration of thrushes: a telemetry study. Ill Nat Hist Sury Bull 33: 297–330

    Google Scholar 

  • Dänhardt J, Lindström Ã… (2001) Optimal departure decision of songbirds from an experimental stopover site and the significance of weather. Anim Behav 62: 235–243

    Article  Google Scholar 

  • DeWolfe BB, West GC, Peyton LJ (1973) The spring migration of Gambel’s sparrows through southern Yukon territory. Condor 75: 43–59

    Article  Google Scholar 

  • Dierschke V, Delingat J (2001) Stopover behaviour and departure decision of northern wheat-ears, Oenanthe oenanthe, with different distances to migratory destination. Behav Ecol Sociobiol 50: 535–545

    Article  Google Scholar 

  • Ellegren H (1991) Stopover ecology of autumn migrating bluethroats, Luscinia s. svecica, in relation to age and sex. Omis Scand 22: 340–348

    Article  Google Scholar 

  • Ellegren H (1993) Speed of migration and migratory flight lengths of passerine birds ringed during autumn migration in Sweden. Ornis Scand 24: 220–228

    Article  Google Scholar 

  • Erni B, Liechti F, Underhill LG, Bruderer B (2002) Wind and rain govern the intensity of nocturnal bird migration in central Europe — a log-linear regression analysis. Ardea 90: 155–166

    Google Scholar 

  • Evans PR, Davidson NC, Piersma T, Pienkowski MW (1991) Implications of habitat loss at migration staging posts for shorebird populations. Acta XX Congr Int Ornithol, Christchurch, New Zealand, pp 2228–2235

    Google Scholar 

  • Farmer AH, Wiens JA (1999) Models and reality: time-energy trade-offs in pectoral sandpiper ( Calidris melanotos) migration. Ecology 80: 2566–2580

    Google Scholar 

  • Fortin D, Liechti F, Bruderer B (1999) Variation in the nocturnal flight behaviour of migratory birds along the northwest coast of the Mediterranean Sea. Ibis 141: 480–488

    Article  Google Scholar 

  • Fransson T (1995) Timing and speed of migration in North and West European populations of Sylvia warblers. J Avian Biol 26: 39–48

    Article  Google Scholar 

  • Fransson T (1998) A feeding experiment on migratory fuelling in whitethroats (Sylvia communis). Anim Behav 55: 153–162

    Article  PubMed  Google Scholar 

  • Fransson T, Weber TP (1997) Migratory fuelling in blackcaps ( Sylvia atricapilla) under perceived risk of predation. Behav Ecol Sociobiol 41: 75–80

    Article  Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414: 35–36

    Article  PubMed  CAS  Google Scholar 

  • Graber JW, Graber RR (1983) Feeding rates of warblers in spring. Condor 85: 139–150

    Article  Google Scholar 

  • Gwinner E (1990) Circannual rhythms in bird migration: control of temporal patterns and interactions with photoperiod. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 257–268

    Chapter  Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199: 39–48

    PubMed  Google Scholar 

  • Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125: 267–273

    Article  Google Scholar 

  • Gwinner E, Biebach H, Kries I (1985) Food availability affects migratory restlessness in caged garden warblers ( Sylvia borin ). Naturwissenschaften 72: 51–52

    Article  Google Scholar 

  • Hebrard JJ (1971) The nightly initiation of passerine migration in spring: a direct visual study. Ibis 113: 8–18

    Article  Google Scholar 

  • Helbig AJ, Berthold P, Wiltschko W (1989) Migratory orientation of blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn. Ethology 82: 307–315

    Article  Google Scholar 

  • Herremans M (1990) Can night migrants use interspecific song recognition to assess habitat? Gerfaut 80: 141–148

    Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166: 388–395

    Article  Google Scholar 

  • Jenni L (1996) Habitatwahl nachtziehender Kleinvögel bei Bodennebel. J Ornithol 137: 425–434

    Article  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29: 521–528

    Article  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1999) Fat and protein utilization during migratory flight. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Johannesburg, pp 1437–1449

    Google Scholar 

  • Jenni L, Naef-Daenzer B (1986) Vergleich der Fanghäufigkeiten von Zugvögeln auf dem Alpenpass Col de Bretolet mit Brutbeständen im Herkunftsgebiet. Ornithol Beob 83: 95–110

    Google Scholar 

  • Jenni L, Widmer F (1996) Habitatnutzung von Kleinvögeln in der Herbstzugzeit am Neuen-burgersee. Ornithol Beob 93: 221–248

    Google Scholar 

  • Jenni L, Jenni-Eiermann S, Spina F, Schwabl H (2000) Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am J Physiol 278:R1182 - R1189

    CAS  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the garden warbler. Auk 111: 888–899

    Article  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1999) Habitat utilisation and energy storage in passerine birds during migratory stopover. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Durban, pp 803–818

    Google Scholar 

  • Jenni-Eiermann S, Jenni L (2001) Postexercise ketosis in night-migrating passerine birds. Physiol Biochem Zool 74: 90–101

    Article  PubMed  CAS  Google Scholar 

  • Klaassen M (1995) Water and energy limitations on flight range. Auk 112: 260–262

    Article  Google Scholar 

  • Klaassen M (1996) Metabolic constraints on long-distance migration in birds. J Exp Biol 199: 57–64

    PubMed  Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164: 362–371

    Article  Google Scholar 

  • Klaassen M, Lindström >Ã… (1996) Departure fuel loads in time-minimizing migrating birds can be explained by the energy costs of being heavy. J Theor Biol 183: 29–34

    Article  Google Scholar 

  • Klaassen M, Kvist A, Lindström A (1999) How body water and fuel stores affect long distance flight in migrating birds. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Johannesburg, pp 1450–1467

    Google Scholar 

  • Kuenzi AY, Moore FR, Simons TR (1991) Stopover of Neotropical landbird migrants on East Ship Island following trans-Gulf migration. Condor 93: 869–883

    Article  Google Scholar 

  • Kullberg C, Jakobsson S, Fransson T (2000) High migratory fuel loads impair predator evasion in sedge warblers. Auk 117: 1034–1038

    Google Scholar 

  • Landys MM, Piersma T, Visser GH, Jukema J, Wijker A (2000) Water balance during real and simulated long-distance migratory flight in the bar-tailed godwit. Condor 102: 645–652

    Article  Google Scholar 

  • Liechti F (1993) Nächtlicher Vogelzug im Herbst fiber Süddeutschland: Winddrift and Kompensation. J Ornithol 134: 373–404

    Article  Google Scholar 

  • Liechti F (1995) Modelling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. J Avian Biol 26: 330–336

    Article  Google Scholar 

  • Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29: 561–568

    Article  Google Scholar 

  • Liechti F, Schaller E (1999) The use of low-level jets by migrating birds. Naturwissenschaften 86: 549–551

    Article  PubMed  CAS  Google Scholar 

  • Liechti F, Hedenström A, Alerstam T (1994) Effects of sidewinds on optimal flight speed of birds. J Theor Biol 170: 219–225

    Article  Google Scholar 

  • Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117: 205–214

    Article  Google Scholar 

  • Lind J, Fransson T, Jakobsson S, Kullberg C (1999) Reduced take-off ability in robins ( Erithacus rubecula) due to migratory fuel load. Behav Ecol Sociobiol 46: 65–70

    Article  Google Scholar 

  • Lindström Ã… (1990) The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla. Behav Ecol 1: 102–106

    Article  Google Scholar 

  • Lindström Ã…, Alerstam T (1992) Optimal fat loads in migrating birds: a test of the time-minimization hypothesis. Am Nat 140: 477–491

    Article  PubMed  Google Scholar 

  • Lindström Ã…, Hasselquist D, Bensch S, Grahn M (1990) Asymmetric contests over resources for survival and migration: a field experiment with bluethroats. Anim Behav 40: 453–461

    Article  Google Scholar 

  • Lindström Ã…, Daan S, Visser GH (1994) The conflict between moult and migratory fat deposition: a photoperiodic experiment with bluethroats. Anim Behav 48: 1173–1181

    Article  Google Scholar 

  • Loria D, Moore FR (1990) Energy demands of migration on red-eyed vireos, Vireo olivaceus. Behav Ecol 1: 24–35

    Article  Google Scholar 

  • Merom K, Yom-Tov Y, McClery R (2000) Philopatry to stopover site and body condition of transient reed warblers during autumn migration through Israel. Condor 102: 441–444

    Google Scholar 

  • Moore F, Aborn DA (1996) Time of departure by summer tanagers ( Piranga rubra) from a stopover site following spring trans-Gulf migration. Auk 113: 949–952

    Article  Google Scholar 

  • Moore FR, Kerlinger P (1987) Stopover and fat deposition by North American wood-warblers ( Parulidae) following spring migration over the Gulf of Mexico. Oecologia 74: 47–54

    Article  Google Scholar 

  • Moore FR, Yong W (1991) Evidence of food-based competition among passerine migrants during stopover. Behav Ecol Sociobiol 28: 85–90

    Article  Google Scholar 

  • Morris SR, Holmes DW, Richmond ME (1996) A ten-year study of the stopover patterns of migratory passerines during fall migration on Appledore Island, Maine. Condor 98: 395–409

    Article  Google Scholar 

  • Piersma T (1998) Phenotypic flexibility during migration: optimization of organ size contingent on the risk and rewards of fueling and flight? J Avian Biol 29: 511–520

    Article  Google Scholar 

  • Piersma T, Gill RE Jr (1998) Guts don’t fly: small digestive organs in obese bar-tailed godwits. Auk 115: 196–203

    Article  Google Scholar 

  • Piersma T, Lindström Ã… (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Piersma T, Bruinzeel L, Drent R, Kersten M, van der Meer J, Wiersma P (1996) Variability in basal metabolic rate of a long-distance migrant shorebird (red knot, Calidris canutus) reflects shifts in organ sizes. Physiol Zool 69: 191–217

    Google Scholar 

  • Rappole JH, Warner DW (1976) Relationships between behavior, physiology and weather in avian transients at a migratory stopover site. Oecologia 26: 193–212

    Article  Google Scholar 

  • Richardson WJ (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 78–101

    Chapter  Google Scholar 

  • Safriel UN, Lavee D (1988) Weight changes of cross-desert migrants at an oasis–do energetic considerations alone determine the length of stopover? Oecologia 76: 611–619

    Google Scholar 

  • Sandberg R, Pettersson J, Alerstam T (1988) Why do migrating robins, Erithacus rubecula, captured at two nearby stop-over sites orient differently? Anim Behav 36: 865–876

    Article  Google Scholar 

  • Schaub M, Jenni L (2000a) Body mass of six long-distance migrant passerine species along the autumn migration route. J Ornithol 141: 441–460

    Google Scholar 

  • Schaub M, Jenni L (2000b) Fuel deposition of three passerine bird species along the migration route. Oecologia 122: 306–317

    Article  Google Scholar 

  • Schaub M, Jenni L (2001a) Stopover durations of three warbler species along their autumn migration route. Oecologia 128: 217–227

    Article  Google Scholar 

  • Schaub M, Jenni L (2001b) Variation of fuelling rates among sites, days and individuals in migrating passerine birds. Funct Ecol 15: 584–594

    Article  Google Scholar 

  • Schaub M, Schwilch R, Jenni L (1999) Does tape-luring of migrating Eurasian reed warblers increase number of recruits or capture probability? Auk 116: 1047–1053

    Article  Google Scholar 

  • Schaub M, Pradel R, Jenni L, Lebreton JD (2001) Migrating birds stop over longer than usually thought: an improved capture-recapture analysis. Ecology 82: 852–859

    Google Scholar 

  • Schwilch R, Jenni L (2001) Low initial refueling rate at stopover sites: a methodological effect? Auk 118: 698–708

    Article  Google Scholar 

  • Schwilch R, Piersma T, Holmgren NMA, Jenni L (2002) Do migratory birds need a nap after a long non-stop flight? Ardea 90: 149–154

    Google Scholar 

  • Simons TR, Pearson SM, Moore F (2000) Application of spatial models to the stopover ecology of trans-Gulf migrants. Stud Avian Biol 20: 4–14

    Google Scholar 

  • Thorup K, Rabol J (2001) The orientation system and migration pattern of long-distance migrants: conflict between model predictions and observed patterns. J Avian Biol 32: 111–119

    Article  Google Scholar 

  • Turrian F, Jenni L (1991) Étude de trois espèces de fauvettes en période de migration postnuptiale à Verbois, Genève: évolution de la masse, offre en nourriture et régime alimentaire. Alauda 59: 73–88

    Google Scholar 

  • Weber TP (1999) Blissful ignorance? Departure rules for migrants in a spatially heterogeneous environment. J Theor Biol 199: 415–424

    Article  PubMed  Google Scholar 

  • Weber TP, Houston AI (1997a) A general model for time-minimising avian migration. J Theor Biol 185: 447–458

    Article  Google Scholar 

  • Weber TP, Houston AI (1997b) Flight costs, flight range and the stopover ecology of migrating birds. J Anim Ecol 66: 297–306

    Article  Google Scholar 

  • Weber TP, Alerstam T, Hedenström A (1998a) Stopover decisions under wind influence. J Avian Biol 29: 552–560

    Article  Google Scholar 

  • Weber TP, Ens BJ, Houston AI (1998b) Optimal avian migration: a dynamic model of fuel stores and site use. Evol Ecol 12: 377–401

    Article  Google Scholar 

  • Wehner R (1998) Navigation in context: grand theories and basic mechanisms. J Avian Biol 29: 370–386

    Article  Google Scholar 

  • Yong W, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes ( Turdinae) following passage across the Gulf of Mexico. Condor 95: 934–943

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jenni, L., Schaub, M. (2003). Behavioural and Physiological Reactions to Environmental Variation in Bird Migration: a Review. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds) Avian Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05957-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05957-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07780-7

  • Online ISBN: 978-3-662-05957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics