Skip to main content

Elimination of Selectable Marker Genes from Transgenic Crops

  • Chapter

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 22))

Abstract

The first reports of successful plant transformation appeared in the early 1980s. Since that time there has been a steady increase in the number of plant species that can be transformed and there have been improvements to the transformation efficiencies of many plant species. However, as DNA uptake and its integration into the genome remain at a low frequency, an essential step in the transformation process is the ability to select transformed cells from the majority of non-transformed cells. This is usually achieved by the expression of a selectable marker gene, linked to the transgene, and selection of transformed cells for their ability to proliferate in the presence of the selective agent. Under appropriate conditions transgenic plants can be regenerated from these selected cells and thereafter the selectable marker gene is generally superfluous. Selectable marker genes have traditionally been antibiotic or herbicide resistance genes, the most commonly used being the neomycin phosphotransferase (nptII), hygromycin phosphotransferase (hyg) and phosphinotricin acetyl transferase (bar) genes which confer resistance to the antibiotics kanamycin, hygromycin and the herbicide glufosinate, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belzile F, Lassner MW, Tong Y, Khush R, Yoder JI (1989) Sexual transmission of transposed activator elements in transgenic tomatoes. Genetics 123: 181–189

    PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1990) Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88: 10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ (1992) Spread of engineered genes to wild relatives. Plant Physiol 100: 13–15

    Article  PubMed  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17: 489–496

    Article  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82: 257–263

    Article  Google Scholar 

  • De Neve M, De Buck S, Jacobs M, Van Montegu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11: 15–29

    Article  PubMed  Google Scholar 

  • Depicker A, Van Montegu M (1997) Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9: 373–382

    Article  PubMed  Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J, Van Montagu M (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to Agrobacterium/plant cell interactions. Mol Gen Genet 20: 477–484

    Article  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121

    Article  PubMed  CAS  Google Scholar 

  • FDA (1994) Secondary direct food additives permitted in food for human consumption: food additives permitted in feed and drinking water of animals: aminoglycoside-3’-phosphotransferase II: final rule. Fed Reg 59: 26700–26711

    Google Scholar 

  • Fedoroff NV (1989) Maize transposable elements. In: Berg DE, Howe MM (eds) Mobile DNA. American Soc Microbiol, Washington DC, pp 375–411

    Google Scholar 

  • Fuchs RL, Heeren RA, Gustafson ME, Rogan GJ, Bartnicki DE, Leimgruber RM, Finn RF, Hershman A, Berberich SA (1993) Safety assessment of the neomycin phosphotransferase II (nptII) protein. Biotechnology 11: 1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Galliano H, Muller AE, Lucht JM, Meyer P (1995) The transformation booster sequence is a retro-transposon derivative that binds to the nuclear scaffold. Mol Gen Genet 247: 614–622

    Article  PubMed  CAS  Google Scholar 

  • Gatz C, Lenk I (1998) Promoters that respond to chemical inducers. Trends Plant Sci 3: 352–358

    Article  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40: 223–235

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11: 1286–1292

    CAS  Google Scholar 

  • Hoess RH, Wierzbicki A, Abemski K (1986) The role of the loxP-spacer region in P1 site-specific recombination. Nucleic Acid Res 5: 2287–2300

    Article  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 18: 15–38

    Google Scholar 

  • Janssen B-J, Gardner RC (1989) Localised transient expression of GUS in leaf discs cocultivated with Agrobacterium. Plant Mol Biol 14: 61–72

    Article  Google Scholar 

  • Jones JDG, Gilbert DE, Grady KL, Jorgensen RA (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 478–485

    Article  CAS  Google Scholar 

  • Jones JDG, Garland F, Lim E, Ralston E, Dooner HK (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707

    PubMed  CAS  Google Scholar 

  • Jorgenson R, Snyder C, Jones JDG (1987) T-DNA is organised predominantly in inverted repeat structures in plant transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477

    Article  Google Scholar 

  • Kilby NJ, Snaith MR, Murray JAH (1993) Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Kilby NJ, Davies GJ, Snaith MR, Murray JAH (1995) FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8: 637–652

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Chrisyou P (1998) Transgene organisation in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95: 7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AN, Davis RW (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet 242: 653–657

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Mitchell JC, Hirayama L, Hodges TK (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acid Res 21: 969–975

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Hirayama L, Rao KV, Abad A, Hodges TK (1995) Heat-inducible expression of FLP gene in maize cells. Plant J 8: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acid Res 24: 3784–3789

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995)

    Google Scholar 

  • Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Google Scholar 

  • Maeser S, Kahmann R (1991) The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. Mol Gen Genet 230: 170–176

    Article  PubMed  CAS  Google Scholar 

  • McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8: 439–445

    Article  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Ann Rev Plant Physiol Plant Mol Biol 47: 23–48

    Article  CAS  Google Scholar 

  • Odell J, Russell SH (1994) Use of site-specific recombination systems in plants. In: Paszkowski J (ed) Homologous recombination and gene silencing in plants. Kluwer, Dordrecht, pp 219–270

    Chapter  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223: 369–378

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acid Res 19: 6373–6378

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C (1995) Visualisation of site-specific recombination catalysed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet 247: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Ow DW, Medberry SL (1995) Genome manipulation through site-specific recombination. Crit Rev Plant Sci 14: 239–261

    CAS  Google Scholar 

  • Puchta H, Swoboda P, Gal S, Blot M, Hohn B (1995) Somatic intrachromosomal homologous recombination events in populations of plant siblings. Plant Mol Biol 28: 281–292

    Article  PubMed  CAS  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234: 49–59

    PubMed  CAS  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17: 1011–1016

    Article  PubMed  CAS  Google Scholar 

  • Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol 91: 808–811

    Article  PubMed  CAS  Google Scholar 

  • Spencer TM, O’Brien JV, Start WG, Adams TR, Goron-Kamm WJ, Lemaux PG (1992) Segregation of transgenes in maize. Plant Mol Biol 18: 210–210

    Article  Google Scholar 

  • Spielmann A, Simpson RB (1986) T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet 205: 34–41

    Article  CAS  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96: 11117–11121

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J 3: 755–761

    Article  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18: 941–947

    Article  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Surin BP, De Feyter RC, Graham MW, Waterhouse PM, Keese PK, Shahjahan A (1997) Single-step excision means. Patent WO 97 /37012

    Google Scholar 

  • Wakita Y, Otani M, Iba K, Shimada T (1998) Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet Syst 73: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12: 263–267

    Article  CAS  Google Scholar 

  • Zechendorf B (1994) What the public thinks about biotechnology. Biotechnology 12:870–875

    Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18: 442–445

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gleave, A.P. (2002). Elimination of Selectable Marker Genes from Transgenic Crops. In: Jackson, J.F., Linskens, H.F. (eds) Testing for Genetic Manipulation in Plants. Molecular Methods of Plant Analysis, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04904-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04904-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07730-2

  • Online ISBN: 978-3-662-04904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics