Skip to main content

Treatment Verification Using Digital Imaging

  • Chapter
Radiation Therapy Physics

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Treatment verification plays a vital role in the management of patients receiving radiation treatment. As part of the overall quality assurance program, it is designed to detect a variety of mistakes, errors, and inaccuracies that can occur during a protracted course of fractionated therapy. Mistakes are due to human misjudgments or performance failures, and may have serious implications if not detected and corrected promptly. Treatment errors arise when calculations or procedures are less accurate than expected and can occur in all the stages of the planning and treatment process. They can be divided into two main categories: those associated with the prescription, computation, and specification of target doses and dose distributions, and those that occur during the delivery phase and involve the treatment machine or the patient. Portal verification, in which a transmission image of the patient is acquired just prior to or during teletherapy, is used to verify that such errors are within acceptable limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amols H, Lowinger T (1987) An inexpensive microcomputer based portal film image enhancement system. Med Phys 14:483

    Article  Google Scholar 

  • Amols H, Reinstein L, Lagueux B (1986) A quantitative assessment of portal film contrast as a function of beam energy. Med Phys 13: 711–716

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Swain R, Rubin P (1958) Continuous visual monitoring of 2 MEV Roentgen therapy. Am J Roentgenol 73: 74–78

    Google Scholar 

  • Antonuk L, Yorkston J, Boudry J (1991) Large area amorphous silicon photodiode arrays for radiotherapy and diagnostic imaging. Nucl Instr Meth Phys Res A310: 460–464

    CAS  Google Scholar 

  • Antonuk L, Boudry J, Huang W et al. (1992) Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous silicon arrays. Med Phys 19: 1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Baily N, Horn R, Kampp T (1980) Fluoroscopic visualization of megavoltage therapeutic x-ray beams. Int J Radiât Oncol Biol Phys 6: 935–939

    Article  PubMed  CAS  Google Scholar 

  • Baiter J, Pelizzari C, Chen T (1992) Correlation of projection radiographs in radiation therapy using open curve segments and points. Med Phys 19: 329–334

    Article  Google Scholar 

  • Barrett H, Swindell W (1981) Radiological imaging, vol 1. Academic press, New York, p 137

    Google Scholar 

  • Bel A, Bartelink H, El-Gayed A, van Herk M, Vijlbrief R, Lebesque J (1992) Portal imaging and decision rules for correcting patient setups. Radiother Oncol 24 (Suppl):S33

    Google Scholar 

  • Benner S, Rosengren B, Wallman H, Netteland O (1962) Television monitoring of a 30 MV X-ray beam. Phys Med Biol 7: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Biggs P, Goitein M, Russell M (1985) A diagnostic X-ray field verification device for a 10 MV linear accelerator. Int J Radiât Oncol Biol Phys 11:635–643

    Article  PubMed  CAS  Google Scholar 

  • Bijhold J, van Herk M, Vijlbrief R, Lebesque J (1991) Fast evaluation of patient set-up during radiotherapy by aligning features in portal and simulator images. Phys Med Biol 36: 1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Bijhold J, Gilhuijs K, van Herk M (1992a) Automatic verification of radiation field shape using digital portal images. Med Phys 19: 1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Bijhold J, Lebesque J, Hart A, Vijlbrief R (1992b) Maximizing setup accuracy using portal images as applied to a conformal boost technique for prostatic cancer. Radiother Oncol 24: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette J-P, Jaffray D, Fenster A, Munro P (1992) Physical characterization and optimal magnification of a portal imaging system. SPIE 1651: 182–188

    Article  Google Scholar 

  • Boesecke R, Bruckner T, Ende G (1990) Landmark based correla- ation of medical images. Phys Med Biol 35: 121–126

    Article  Google Scholar 

  • Boyer A, Antonuk L, Fenster A, et al. (1992) A review of electronic portal imaging devices (EPIDs). Med Phys 19: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1988) Accuracy requirements and quality assurance of external beam therapy with photons and electrons. Acta Oncol (Suppll)

    Google Scholar 

  • Buchanan R, Sklensky A, Maple T, Bailey H (1947) Metal-phosphor intensifying screens for high energy imaging applications. IEEE Trans NS-21: 692–694

    Google Scholar 

  • Cohen G, Wagner L, Amtey S (1981) Contrast-detail-dose and dose efficiency analysis of a scanning digital and a screen-film-grid radiographic system. Med Phys 8: 358–367

    Article  PubMed  CAS  Google Scholar 

  • Creutzberg C, Visser A, De Porre P, Meerwaldt J, Althof V, Levendag P (1992) Accuracy of patient positioning in mantle field irradiation. Radiother Oncol 23: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Crooks I, Fallone B (1991) PC-based selective histogram equalization for contrast enhancement of portal films. Med Phys 18:618

    Google Scholar 

  • Cumberlin R, Rodgers J, Fahey F (1989) Digital image processing of radiation therapy portal films. Comput Med Imaging Graph 13: 227–233

    Article  PubMed  CAS  Google Scholar 

  • Dally M, Hunter K, Wheat J, Leslie G, Fahey P, Hamilton C Denham J (1992) Objective decision making following a portal film: the results of a pilot study. Radiother Oncol 24 (Suppl): S45

    Article  Google Scholar 

  • De Neve W, Van den Heuvel F, De Beukeleer M et al. (1992) Routine clinical on-line portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radiother Oncol 24: 45–54

    Article  PubMed  Google Scholar 

  • Droege R, Bjarngard B (1979a) Influence of metal screens on contrast in megavoltage X-ray imaging. Med Phys 6: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Droege R, Bjarngard B (1979b) Metal screen-film detector MTF at megavoltage X-ray energies. Med Phys 6: 515–518

    Article  PubMed  CAS  Google Scholar 

  • Droege RT, Stefanakos TK (1985) Portal film technique charts. Int J Radiât Oncol Biol Phys 11: 2027–2031

    Article  PubMed  CAS  Google Scholar 

  • Dutreix A, van der Schueren E, Leunens L (1992) Quality control at the patient level: action or retrospective introspection? Radiother Oncol 25: 146–147

    Article  PubMed  CAS  Google Scholar 

  • El-Gayed A, Bartelink H, Bel A, Vijlbrief R, Lebesque J (1992) Evaluation of the time trend of setup deviations during the course of pelvic irradiation using an electronic portal imaging device. Radiother Oncol 24 (Suppl): S45

    Article  Google Scholar 

  • Evans P, Gildersleve J, Morton E et al. (1992) Image comparison techniques for use with megavoltage imaging systems. Br J Radiol 65: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Ezz A, Munro P, Porter A, Battista J, Jaffray D, Fenster A, Osborne S (1992) Daily monitoring and correction of radiation field placement using a video-based portal imaging system: a pilot study. Int J Radiât Oncol Biol Phys 22: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Faermann S, Krutman Y (1992) Generation of portal film charts for 10-MV x-rays. Med Phys 19: 351–353

    Article  PubMed  CAS  Google Scholar 

  • Galbraith D (1989) Low-energy imaging with high-energy brems-strahlung beams. Med Phys 16: 734–746

    Article  PubMed  CAS  Google Scholar 

  • Galkin B, Wu R, Suntharalingam N (1978) Improved technique for obtaining teletherapy portal radiographs with high-energy photons. Radiology 127: 828–830

    PubMed  CAS  Google Scholar 

  • Gildersleve J, Dearnaley D, Evans P, Law M, Rawlings C, Swindell W (1992) A randomised trial of patient repositioning during pelvic radiotherapy. Presented at Megavoltage Portal Imaging, London

    Google Scholar 

  • Goer D (1983) Radiation therapy treatment: the role of treatment aids and accessories IEEE Trans NS-30: 1784–1787

    Google Scholar 

  • Gonzalez RC, Wintz P (1987) Digital image processing, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Graham ML, Cheng AY, Geer LY, Binns WR, Vannier MW, Wong JW (1991) A method to analyze 2-dimensional daily radiotherapy portal images from an on-line fiber-optic imaging system. Int J Radiât Oncol Biol Phys 20: 613–619

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Pearcey R, Thorogood J (1987) Quality control in radiotherapy: The reduction of field placement errors. Int J Radiât Oncol Biol Phys 13: 1583–1588

    Article  CAS  Google Scholar 

  • Griffiths S, Khoury G, Eddy A (1991) Quality control of radiotherapy during pelvic irradiation. Radiother Oncol 20:203–206

    Article  PubMed  CAS  Google Scholar 

  • Gur D, Deutsch M, Fuhrman C, Clayton P, Weiser J, Rosenthal M, Bukovitz A (1989) The use of storage phosphors for portal imaging in radiation therapy: therapists perception of image quality. Med Phys 16: 132–136

    Article  PubMed  CAS  Google Scholar 

  • Halverson K, Leung T, Pellet J, Gerber R, Weinhous M, Wong J (1991) Study of treatment variation in the radiotherapy of head and neck tumors using a fiber-optic on-line radiotherapy imaging system. Int J Radiât Oncol Biol Phys 21: 1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Hammoudah M, Henschke U (1977) Supervoltage beam films. Int J Radiât Oncol Biol Phys 2: 571–577

    Article  PubMed  CAS  Google Scholar 

  • Haus A, Pinsky S, Marks J (1970) A technique for imaging patient treatment area during a therapeutic radiation exposure. Radiology 97: 653

    PubMed  CAS  Google Scholar 

  • Haus A, Marks J, Griem M (1973) Evaluation of an automatic rapid- processable film for imaging during the complete radiotherapeutic exposure. Radiology 107: 697–698

    PubMed  CAS  Google Scholar 

  • Heukelom S, Lanson J, Mijnheer B (1992) In vivo dosimetry during pelvic treatment. Radiother Oncol 25: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Huizenga H, Levendag P, De Porre P, Visser A (1988) Accuracy in radiation field alignment in head and neck cancer: A prospective study. Radiother Oncol 11: 181–187

    Article  PubMed  CAS  Google Scholar 

  • ICRU (1976) Errors in clinical dosimetry. Report 24: 45

    Google Scholar 

  • Jaffray D, Battista J, Fenster A, Munro P (1993) X-ray sources of medical linear accelerators: Focal and extra-focal radiation. Med Phys 20: 1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen A, Iversen P, Gadeberg C, Lindberg Hansen J, Hjelm-Hansen M (1987) A new system for patient fixation in radiotherapy. Radiother Oncol 8:145–151

    Article  PubMed  CAS  Google Scholar 

  • Johns HE, Cunningham JR (1983) The physics of radiology, Charles C. Thomas, Springfield, 111.

    Google Scholar 

  • Jones S, Boyer A (1991) Investigation of an FFT-based correlation technique for verification of treatment setup. Med Phys 18: 1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Kartha P, Chung-Bin A, Wachtor T, Hendrickson F (1977) Accuracy in radiotherapy treatment. Int J Radiât Oncol Biol Phys 2: 797–799

    Article  PubMed  CAS  Google Scholar 

  • Kihlen B, Cederlund T, Lagergren C, Nordeil B, Rüden B (1991) Improved portal film image quality in radiation therapy with high energy photons. Acta Oncol 30: 1–5

    Article  Google Scholar 

  • Kotre C, Marshall N, Faulkner K (1992) An alternative approach to contrast-detail testing of X-ray image intensifier systems. Br J Radiol 65: 686–690

    Article  PubMed  CAS  Google Scholar 

  • Lam K, Ten Haken R (1991) Improvement of precision in spatial localization of radio-opaque markers using the two-film technique. Med Phys 18: 1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Lam K, Partowmah M, Lam W (1986) An on-line electronic portal imaging system for external beam radiotherapy. Br J Radiol 59: 1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Lam W, Herman M, Lam K, Lee D (1991) On-line portal imaging: computer-assisted error measurements. Radiology 179: 871–873

    PubMed  CAS  Google Scholar 

  • Lebesque J, Bijhold J, Hart A (1992) Detection of systematic patient set-up errors by portal film analysis. Radiother Onco l23: 198

    Article  Google Scholar 

  • Leong J (1984) A digital image processing system for high energy X-ray portal images. Phys Med Biol 29: 1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Leong J (1986) Use of digital fluoroscopy as an on-line verification device in radiation therapy. Phys Med Biol 31: 985–992

    Article  PubMed  CAS  Google Scholar 

  • Leong J, Stracher M (1987) Visualization of internal motion within a treatment portal during a radiation therapy treatment. Radiother Oncol 9: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski K, Shalev S (1989) A robust algorithm for contrast enhancement by local histogram modification. Image and Vision Computing 7: 205–209

    Article  Google Scholar 

  • Leszczynski K, Shalev S (1993) Verification of radiotherapy treatments: Computerized analysis of the size and shape of radiation fields. Med Phys 20: 687–694

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski K, Shalev S, Cosby S (1990) A digital video system for on-line portal verification. SPIE 1231: 401–405

    Article  Google Scholar 

  • Leszczynski K, Shalev S, Cosby S (1992a) The enhancement of radiotherapy verification images by an automated edge detection technique. Med Phys 19: 611–622

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski K, Shalev S, Ryder S (1992b) A study on the efficacy of digital enhancement of on-line portal images. Med Phys 19: 999–1005

    Article  PubMed  CAS  Google Scholar 

  • Leunens G, Verstraete J, Van den Bogaert W, Van Dam J, Dutreix A, van der Schueren E (1992) Human errors in data transfer during the preparation and delivery of radiation treatment affecting the final result: “garbage in, garbage out”. Radiother Oncol 23: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Loewenthal E, Loewinger E, Bar-Avraham E, Barnea G (1992) Measurement of the source size of a 6- and 18-M V radiotherapy linac. Med Phys 19: 687–690

    Article  PubMed  CAS  Google Scholar 

  • Marks J, Haus A (1976) The effect of immobilisation on localisation error in the radiotherapy of head and neck cancer. Clin Radiol 27: 175–177

    Article  PubMed  CAS  Google Scholar 

  • McGee K, Shalev S (1993) Reduction of interpolation artifacts introduced by MHE in digital on-line portal images. Phys Med Biol 38: 601–614

    Article  Google Scholar 

  • Meertens H, van Herk M, Weeda J (1988) An inverse filter for digital restoration of portal images. Phys Med Biol 33: 687–702

    Article  PubMed  CAS  Google Scholar 

  • Meertens H, Bijhold J, Strackee J (1990) A method for the measurement of field placement errors in digital portal images. Phys Med Biol 35: 299–323

    Article  PubMed  CAS  Google Scholar 

  • Mitine C, Leunens G, Verstraete J, Blanckaèrt N, Van Dam J, Dutreix A, van der Schueren E (1991) Is is necessary to repeat quality control procedures for head and neck patients? Radiother Oncol 21: 202–210

    Article  Google Scholar 

  • Mok E, Feldmeier J (1988) Digital enhancement of treatment verification films using a low cost video digitizer with a personal computer. Phys Med Biol 33 (Suppl 1): 47

    Google Scholar 

  • Morton E, Swindell W, Lewis D, Evans P (1991) A linear array, scintillation crystal-photodiode detector for megavoltage imaging. Med Phys 18: 681–691

    Article  PubMed  CAS  Google Scholar 

  • Muller-Runkel R, Watkins S (1991) Introducing a computerized record and verify system: Its impact on treatment errors. Med Dosim 16: 19–22

    PubMed  CAS  Google Scholar 

  • Munro P, Rawlinson J, Fenster A (1988) Therapy imaging: source sizes of radiotherapy beams. Med Phys 15: 517–524

    Article  PubMed  CAS  Google Scholar 

  • Munro P, Rawlinson J, Fenster A (1990) A digital fluoroscopic imaging device for radiotherapy localization. Int J Radiât Oncol Biol Phys 18: 641–649

    Article  CAS  Google Scholar 

  • Pizer SM, Amburn EP, Austin JD, et al. (1987) Adaptive histogram equalization and its variations. Comput Vision Graphics Image Process 9: 355–368

    Article  Google Scholar 

  • Pratt WK (1991) Digital image processing. Wiley, New York

    Google Scholar 

  • Rabinowitz I, Broomberg J, Goitein M, McCarthy K, Leong J (1985) Accuracy of radiation field alignment in clinical practice. Int J Radiât Oncol Biol Phys 11: 1857–1867

    Article  PubMed  CAS  Google Scholar 

  • RCA (1974) Electro-optics handbook. RCA, New Jersey, pp 216–217

    Google Scholar 

  • Reinstein L (1986) Radiotherapy portal imaging quality. In: Kereiakes J, Elson H, Born C (eds) Radiation oncology physics. American Institute of Physics, New York, p 627 (AAPM medical physics monograph no. 15)

    Google Scholar 

  • Reinstein LE, Orton CG (1979) Contrast enhancement of high-energy radiotherapy films. Brit J Radiol 52: 880–887

    Article  PubMed  CAS  Google Scholar 

  • Reinstein LE, Durham M, Tefft M, Yu A, Glicksman AS (1984) Portai film quality: A multiple institutional study. Med Phys 11: 555–557

    Article  PubMed  CAS  Google Scholar 

  • Reinstein L, Alquist L, Amols H, Lagueux B (1987a) Quantitative evaluation of a portal film contrast enhancement technique. Med Phys 14: 309–313

    Article  PubMed  CAS  Google Scholar 

  • Reinstein L, Amols H, Biggs P, Droege R, Filimonov A, Lutz W, Shalev S (1987b) Radiotherapy portal imaging quality. American Institute of Physics, New York (AAPM report no.24)

    Google Scholar 

  • Reinstein L, Shalev S, Leszczynski K, Cosby S, Meek A (1988) Megavoltage movies. Int J Radiât OncolBiol Phys 15 (Suppl 1): 200

    Google Scholar 

  • Roehrig H, Lutz W, Barnea G, Pond G, Dallas W (1990) Use of computed radiography for portal imaging. Proc SPIE 1231: 492–497

    Article  Google Scholar 

  • Schonemann PH, Carroll RM (1970) Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 247–255

    Google Scholar 

  • Sephton R, Green M, Fitzpatrick C (1989) A new system for port films. Int J Radiât Oncol Biol Phys 16: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Shalev S (1992) The design and clinical application of digital portal imaging systems. Int J Radiât Oncol Biol Phys 24 (Suppl 1): 104

    Article  Google Scholar 

  • Shalev S, McGee K (1992) Evaluation of image processing techniques by ROC analysis. Med Phys 19: 822

    Google Scholar 

  • Shalev S, Arensqn J, Stewart M (1984) Digital enhancement of treatment verification films. Radiology 153(P): 154

    Google Scholar 

  • Shalev S, Cheng CW, Arenson J (1985) Port film enhancement by digital processing. SPIE 555: 103–108

    Article  CAS  Google Scholar 

  • Shalev S, Leszczynski K, Cosby S, Reinstein L, Meek A (1988) Online verification of radiation treatment portals. Proc IEEE/ EMBS New Orleans: 382–383

    Google Scholar 

  • Shalev S, Lee T, Leszczynski K, Cosby S, Chu T, Reinstein L, Meek A (1989) Video techniques for on-line portal imaging. Comput Med Imaging Graph 13: 217–226

    Article  PubMed  CAS  Google Scholar 

  • Shalev S, Leszczynski K, Cosby S, Agbay H (1990) Clinical implementation of on-line portal imaging. Med Phys 17: 554

    Google Scholar 

  • Sherouse GW, Rosenman J, McMurry HL, Pizer SM, Chaney EL (1987) Automatic digital contrast enhancement of radiotherapy films. Int J Radiât Oncol Biol Phys 13: 801–806

    Article  PubMed  CAS  Google Scholar 

  • Sherouse G, Bourland D, Reynolds K, McMurry H, Mitchell T, Chaney E (1990) Virtual simulation in the clinical setting: Some practical considerations. Int J Radiât Oncol Biol Phys 19:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Shiu A, Hogstrom K, Janjan N, Fields R, Peters L (1987) Technique for verifying treatment fields using portal images with diagnostic quality. Int J Radiât Oncol Biol Phys 13: 1589–1594

    Article  PubMed  CAS  Google Scholar 

  • Smith V (1987) Routines for enhancement for radiation therapy images. In: Bruinvis I (ed) The use of computers in radiation therapy. Elsevier Science, North Holland, pp 37–40

    Google Scholar 

  • Soffen E, Hanks G, Hwang C, Chu J (1991) Conformai static field therapy for low volume low grade prostate cancer with rigid immobilization. Int J Radiât Oncol Biol Phys 20: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Svensson G (1984) Quality assurance in radiation therapy: physics efforts. Int J Radiât Oncol Biol Phys 10 (Suppl 1): 23–29

    Article  PubMed  Google Scholar 

  • Tait W, Hanson M (1989) Microcomputer processing of film radiographs. Br J Radiol 62: 613–619

    Article  PubMed  CAS  Google Scholar 

  • Thornton A, Ten Haken R, Gerhardsson A, Correll M (1991) Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging. Radiother Oncol 20: 224–228

    Article  PubMed  Google Scholar 

  • van Dam J, Vaerman C, Blanckaert N, Leunens G, Dutreix A, van der Schueren E (1992) Are port films reliable for in vivo exit dose measurements? Radiother Oncol 25: 67–72

    Article  PubMed  Google Scholar 

  • van Herk M, Meertens H (1988) A matrix ionisation chamber imaging device for on-line patient setup verification during radiotherapy. Radiother Oncol 11: 369–378

    Article  PubMed  Google Scholar 

  • van Herk M, Bijhold J, Hoogervorst B, Meertens H (1992) Sampling methods for a matrix ionization chamber system. Med Phys 19: 409–418

    Article  PubMed  Google Scholar 

  • van Tienhoven G, Lanson J, Crabeels D, Heukelom S, Mijnheer B (1991) Accuracy in tangential breast treatment set-up: a portal imaging study. Radiother Oncol 22: 317–322

    Article  PubMed  Google Scholar 

  • Verhey L, Goitein M, McNulty P, Munzenrider J, Suit H (1982) Precise positioning of patients for radiation therapy. Int J Radiât Oncol Biol Phys 8: 289–294

    Article  CAS  Google Scholar 

  • Visser A, Huizenga H, Althof V, Swanenburg B (1990) Performance of a prototype fluoroscopic radiotherapy imaging system. Int J Radiât Oncol Biol Phys 18: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Webb S (1988) The physics of medical imaging. Adam Hilger, Bristol, pp 26–32

    Book  Google Scholar 

  • Weinhous M (1990) Treatment verification using a computer workstation. Int J Radiât Oncol Biol Phys 19:1549–1554

    Article  PubMed  CAS  Google Scholar 

  • Weiser J, Gur D, Gennari R (1990) Evaluation of analog contrast enhancement and digital unsharp masking in low-contrast portal images. Med Phys 17: 122–125

    Article  PubMed  CAS  Google Scholar 

  • Wilenzick R, Merritt C (1987) Megavoltage portal films using computer radiographic imaging with photostimulable phosphors. Med Phys 14: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Binns R, Cheng A, Greer L, Epstein J, Purdy J (1990a) On-line radiotherapy imaging with an arrary of fiberoptic image reducers. Int J Radiât Oncol Biol Phys 18: 1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Slessinger E, Hermes R, Offutt C, Roy T, Vannier M (1990b) Portal dose images. I. Quantitative treatment plan verification. Int J Radiât Oncol Biol Phys 18: 1455–1463

    Article  PubMed  CAS  Google Scholar 

  • Wowk B, Radcliffe T, Shalev S, Rajapakshe R (1994) Optimization of metal/phosphor screens for on-line portal imaging. Med Phys 21: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Ying X, Geer L, Wong J (1990) Portal dose images. II. Patient dose estimation. Int J Radiât Oncol Biol Phys 18: 1465–1475

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shalev, S. (1995). Treatment Verification Using Digital Imaging. In: Smith, A.R. (eds) Radiation Therapy Physics. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03107-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03107-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03109-4

  • Online ISBN: 978-3-662-03107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics