Skip to main content

Zusammenfassung

Das ventrikuläre Schlagvolumen bezeichnet als Differenz zwischen dem enddiastolischen (EDV) und endsystolischen Volumen (ESV) die in der Systole ausgeworfene Blutmenge des entsprechenden Ventrikels. Schlagvolumen und Herzfrequenz sind die Teilgrößen des Herzzeitvolumens, das im Regelmodell des Blutkreislaufs (Kapitel 2) das Stellglied repräsentiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Antoni H (1977). Auslösung, Mechanismus und Steuerung der Kontraktion. In: Reindell H, Roskamm H (Hrsg). Herzkrankheiten. Pathophysiologie, Diagnostik,Therapie. Springer, Berlin, Heidelberg, New York, S54

    Google Scholar 

  • Antoni H (1980). Funktion des Herzens. In: Schmidt RF, Thews G. Physiologie des Menschen. Springer, Berlin, Heidelberg, New York, S391

    Google Scholar 

  • Astrand PO, Cuddy TE, Saltin B, Stenberg J (1977). Cardiac output during submaximal and maximal work. J Appl Physiol 19:268

    Google Scholar 

  • Baan J, Aouw Jong TT, Kerkhof PLM, Moene RJ, van Dijk AD, van der Velde Etkoops J (1981). Continuous stroke volume and cardiac output from intraventricular dimensions obtained with impedance catheter. Cardiovasc Research 15: 328

    Article  CAS  Google Scholar 

  • Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, Temmerman D, Senden J, Buis B (1984). Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:5, 812

    Article  PubMed  CAS  Google Scholar 

  • Bennett TD, Olson WH, Bornzin GA, Baudino MD (1985). Alternatives modes of pacing. In: Gomez FP (ed) Cardiac Pacing. Electrophysiology. Tachyarrhythmias. Editorial Grouz, Madrid, p577

    Google Scholar 

  • Boheim G, Schaldach M (1985). Physiologische Herzschrittmachersteuerung mit Frequenzadaptation. Biomed Technik 30 (Ergbd):64

    Article  Google Scholar 

  • Boheim G, Schaldach M (1987). A pacemaker that measures the heart volume to realize closed loop rate adaptation. PACE 10:1209

    Google Scholar 

  • Borer JS, Bacharach SL, Green MV, Kent KM, Epstein SE, Johnson GS (1977). Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary artery disease. N Engl J Med 296:839

    Article  PubMed  CAS  Google Scholar 

  • Borer JS, Kent KM, Bacharach SL, Green MV, Rosing DR, Seides GF, Epstein SE, Johnston GS (1979). Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease: comparison with exercise electrocardiography. Circulation 60:572

    PubMed  CAS  Google Scholar 

  • Braunwald E, Sonnenblick EH, Ross J, Glick G, Epstein E (1967). An analysis of the cardiac response to exercise. Circ Res XX (Suppl I): 1–44

    Google Scholar 

  • Chapman CB, Fisher JN, Sproule BJ (1960). Behavior of stroke volume at rest and during exercise in human beings. J Clin Invest 30:1208

    Article  Google Scholar 

  • Clausen JP (1976). Circulatory adjustments to dynamic exercise and effects of physical training in normal subjects and patients with coronary artery disease. Prog Cardiovasc Dis XVIII:459

    Article  Google Scholar 

  • Frank O (1895). Zur Dynamik des Herzmuskels. Z Biol 32:370

    Google Scholar 

  • Frewer RA (1972). The effect of frequency changes on the electrical conductance of moving and stationary blood. Med Biol Eng 10:734

    Article  PubMed  CAS  Google Scholar 

  • Geddes LA, Sadler C (1973). The specific resistance of blood at body temperature. Med Biol Eng 11:336

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR (1986). Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 58:281

    PubMed  CAS  Google Scholar 

  • Hill DW, Thompson FD (1975). The effect of haematocrit on the resistivity of human blood at 37 °C and 100 kHz. Med Biol Eng 13:182

    Article  PubMed  CAS  Google Scholar 

  • Horwitz LD, Atkins JM, Leshin SJ (1972). Role of Frank-Starling mechanism in exercise. Circ Res 31:868

    PubMed  CAS  Google Scholar 

  • Jacob R, Gülch R, Kissling R, Sick W (1971). Autoregulative Mechanismen des Herzens bei akuter Druck-und Volumenbelastung. Ärtzl Forsch 25:85

    CAS  Google Scholar 

  • Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K (1986). Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73:586

    Article  PubMed  CAS  Google Scholar 

  • Kindler M, Thormann J, Kramer W (1986). Klinischer Einsatz eines neuartigen Herzkatheters zur simultanen Erfassung von Druck-und Volumensignalen. Biomed Technik 31(Ergbd):74

    Article  Google Scholar 

  • McKay RG, Spears JR, Aroesty JM, Baim DS, Royal HD, Heller GV, Lincoln W, Salo RW, Braunwald E, Grossman W (1984). Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 69:703

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SN, Hill DW (1975). The changes in blood resistivity with haematocrit and temperature. Europ J Intens Care Med 1:153

    Article  CAS  Google Scholar 

  • Mungall AG, Morris D, Martin WS (1961). Measurement of the dielectric properties of blood. IRE Trans Biomedical Electronics 8:109

    Article  CAS  Google Scholar 

  • Neumann G, Bakels N, Niederau C (1985). Intracardiac impedance as a stroke volume sensor. In: Gomez FP (ed) Cardiac Pacing. Electrophysiology. Tachyarrhythmias. Editorial Grouz, Madrid, p803

    Google Scholar 

  • Olsen CO, Tyson GS, MAier GW, Davis JW, Rankin JS (1985). Diminished stroke volume during inspiration: a reverse thoracic pump. Circulation 72:668

    Article  PubMed  CAS  Google Scholar 

  • Rush S, Abildskov JA, McFee R (1963). Resistivity of body tissues at low frequencies. Circ Res XII:40

    Google Scholar 

  • Rushmer RF (1959). Constancy of stroke volume in ventricular response to exertion. Am J Physiol 196:745

    PubMed  CAS  Google Scholar 

  • Schön HR, Ried CR, Arnold-Schneider M, Sebening H, Sauer E, Bauer R, Papst HW, Blömer H (1986). Radionuclide assessment of normal left ventricular response to exercise in patients without evidence of heart disease. Europ Heart J 7:118

    Google Scholar 

  • Salo RW, Pederson BD, Pederson BD, Olive AL, Lincoln WC, Wallner TG (1984). Continuous ventricular volume assessment for diagnosis and pacemaker control. PACE 7:1267

    Article  PubMed  CAS  Google Scholar 

  • Salo RW, Wallner TG, Pederson BD (1986). Measurement of ventricular volume by intracardiac impedance: theoretical and empirical approaches. IEEE Trans on Biom Eng BME. 33:189

    Article  CAS  Google Scholar 

  • Santamore WP, Heckman JL, Bove AA (1984). Right and left ventricular pressure-volume response to respiratory maneuvers. J Appl Physiol: Respirat Environ Exercise Physiol 57(5): 1920

    Google Scholar 

  • Snoek J, Berkhof M, Vrinis C (1988). Bipolar impedance measurement as sensor for rate responsive pacing. PACE 11 (Suppl):813

    Google Scholar 

  • Schwan HP, Kay CF (1956). Specific resistance of body tissues. Circ Res IV:664

    Google Scholar 

  • Schwan HP, Kay CF (1957). Capacitive properties of body tissues. Circ Res V:439

    Google Scholar 

  • Sonnenblick EH, Braunwald E, Williams JF, Glick G (1965). Effects of exercise on myocardial force-velocity relations in intact unanaestetized man: relative roles of changes in heart rate, sympathetic activity, and ventricular dimensions. J Clin Invest 44:2051

    Article  PubMed  CAS  Google Scholar 

  • Stangl K, Wirtzfeld A, Göbl G, Heinze R, Laule M, Hoekstein K (1987). Schlagvolumen, zentralvenöse Sauerstoffsättigung und Bluttemperatur als Steuergrößen einer frequenzadaptierten Schrittmacherstimulation. Z Kardiol 76:110

    PubMed  CAS  Google Scholar 

  • Starling EH (1915). The lineacre lecture on the law of the heart. Longmans, Cambridge

    Google Scholar 

  • Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B (1971). A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterisation. Am J Cardiol 28:575

    Article  PubMed  CAS  Google Scholar 

  • Thadani U, Parker JO (1978). Hemodynamics at rest and during supine and sitting bicycle exercise in normal subjects. Am J Cardiol 41:52

    Article  PubMed  CAS  Google Scholar 

  • Trautmann ED, Newbower RS (1983). A practical analysis of the electrical conductivity of blood. IEEE Trans Biom Eng BME 30:141

    Article  Google Scholar 

  • Vatner SF, Pagani M (1976). Cardiovascular adjustments to exercise: hemodynamics and mechanisms. Prog Cardiovasc Dis XIX:91

    Article  Google Scholar 

  • Voelz MB, Wessale JL, Geddes LA, Voorhees, H Patel UH (1988). Analysis of right-ventricular impedance waveform and its correlation to stroke volume. PACE 11 (Suppl):813

    Google Scholar 

  • Warner HR, Toronto AF (1960). Regulation of cardiac output through stroke volume. Circ Res 8:549

    PubMed  CAS  Google Scholar 

  • Zaret BJ, Strauss HW, Hurley PJ, Natarajan TK, Pitt B (1971). A noninvasive scintigraphic method for detecting regional ventricular dysfunction in man. New Engl J Med 284:1165

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann G, Pfeiffer U (1984). Transthorakale elektrische Impedanzmessung zur Lungenwassererfassung: Gegenwärtiger Stand und Zukunftsaspekte. In: Bergmann H, Gilly H, Steinbereithner K, Sturm J (Hrsg) Lungenwasserbestimmung, Teil II. Klinische Bedeutung. Beiträge zur Anaesthesiologie und Intensivmedizin 6. Maudrich, Wien, München, Bern, S180

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Stangl, K., Wirtzfeld, A. (1990). Schlagvolumen. In: Frequenzadaptive Herzschrittmacher. Steinkopff. https://doi.org/10.1007/978-3-642-85388-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85388-3_8

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85389-0

  • Online ISBN: 978-3-642-85388-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics