Skip to main content

Approximate Theory of Spiral Heat Exchanger

  • Conference paper
Design and Operation of Heat Exchangers

Part of the book series: EUROTHERM Seminars ((EUROTHERM,volume 18))

Summary

Based on the spiral of Archimedes, an analytical solution is developed which describes the thermal behaviour of the countercurrent Spiral Heat Exchanger (SHE) including the characteristic maximum of effectiveness occurring with increasing values of NTU. For the analysis, the overall heat transfer coefficient and both heat capacities are assumed to be constant along the flow path. Additionally, such a high number of turns is presumed that the special situation in the first and last turn does not have to be taken into account. The analytical solution of the energy balance equations yields a simple, universal formula for the log mean temperature difference correction factor F as function of NTUI and NTUII, as well as the number of channels and further geometrical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

Ac=hob:

m cross-sectional area of flow channel

Ao :

m total heat transfer surface area

b:

m channel spacing

\(C = \sqrt {C_I C_{II} } \) :

W/K mean heat capacity rate

\(CN = 2NTU\sqrt {\pi A_c /A_o } \) :

Criterion Number

F:

log mean temperature difference correction factor

f=CNo/CN:

adjustment factor for Criterion Number

ho :

m height of exchanger

k:

W/m2K overall heat transfer coefficient

n:

number of channels equal to double number of turns

NTU=kAo/C:

number of transfer units (mean value)

P:

effectiveness, dimensionless temperature change

:

W/rad heat flux Q, related to angle F (see Fig. 2.)

R = CI/CII :

heat capacity rate ratio

r=r/b:

dimensionless radius, r’ real radius

:

dimensionless temperature, t’ real temperature of fluid I or II

x=ψr:

coordinate proportional to distance measured along main spiral

Δ(r) = tI(r)-tII(r):

local temperature difference

Θ:

mean temperature difference

ψ = 2πkAc/C:

cross-sectional number of transfer units (mean value)

κ(t) = ψr[tI(r+l)-tII(r-l)]:

reduced heat flux density

â„“:

rad angle in polar coordinate system (see Fig. 2.)

References

  1. Madejski, J.: Theory of Heat Exchange (in Polish) PWN Warszawa — Poznan, pp. 381-386, 1963

    Google Scholar 

  2. Zaleski, T.; Krajewski, W.: Method of Calculating Spiral Exchangers (in Polish), Inzynieria Chemiczna (Chemical Engineering) II, 1. 35 pp. 35–51, Warszawa, 1972

    Google Scholar 

  3. Cieslinski, J. P.; Bes, T.: Analytical Heat Transfer Studies in Spiral Plate Heat Exchangers, Reprints of XVI. Congr. of Refrigeration, Institut International du Froid (I.I.F.), Paris, pp. 67–72, 1983

    Google Scholar 

  4. Bes, Th.: Eine Methode der thermischen Berechnung von Gegen-und Gleichstrom-Spiralwärmeaustauschern, Wärme-und Stoffübertragung 21, pp. 301–309, 1987.

    Article  ADS  Google Scholar 

  5. Nowak, W: Calculating of Heat Exchangers Considering Heat Losses to Environment (in Polish), Zeszyty Naukowe Pol. Szczecinskiej (Scientific Journals Tech. Uni. of Stettin) No. 114, 1969

    Google Scholar 

  6. Buonopane, R. A.; Troupe, R. A.: Analytical and Experimental Heat Transfer Studies in a Spiral Plate Heat Exchanger, IV. International Heat Transfer Conference, Volume 1, HE 2.5, Paris, 1970

    Google Scholar 

  7. Martin, H.; Chowdhury, K.: Linkmeyer, H.; Bassiouny, K.M; Straightforward Design Formulae for Efficiency and Mean Temperature Difference in Spiral Plate Heat Exchanger, VIII. International Heat Transfer Conference, Volume 6, pp. 2793–2797, San Francisco, 1986

    Google Scholar 

  8. Bes, Th.; Roetzel, W.: Distribution of Heat Flux Density in Spiral Heat Exchangers, accepted for publication in Int. J. Heat Mass Transfer

    Google Scholar 

  9. Strenger, M.; Churchill, S.; Retallik, W.: Operational Characteristic of a Double-Spiral Heat Exchanger for the Catalytic Incineration of Contaminated Air, Ind. Eng. Chem. Res., 1990, 29, pp. 1977–1984

    Article  Google Scholar 

  10. Roetzel, W.; Berechnung von Wärmeübertragern (Chapt. C of VDI-Wärmeatlas, 4th edition) VDI-Verlag, Düsseldorf 1984

    Google Scholar 

  11. Gaddis, E.S.; Spalding, D.B.; Taborek, J.: Heat Exchanger Theory, (vol. I of Heat Exchanger Design Handbook), VDI-Verlag GmbH, Hemisphere Publishing Corporation Washington, N. York, London 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bes, T., Roetzel, W. (1992). Approximate Theory of Spiral Heat Exchanger. In: Roetzel, W., Heggs, P.J., Butterworth, D. (eds) Design and Operation of Heat Exchangers. EUROTHERM Seminars, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84450-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84450-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84452-2

  • Online ISBN: 978-3-642-84450-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics