Skip to main content

On the Similarity Character of an Unsteady Rarefaction Wave in a Gas-Vapour Mixture with Condensation

  • Conference paper
Adiabatic Waves in Liquid-Vapor Systems

Abstract

The self-similar solution of an unsteady rarefaction wave in a gas-vapour mixture with condensation is investigated. If the onset of condensation occurs at the saturation point, the rarefaction wave is divided into two zones, separated by a uniform region. If condensation is delayed until a fixed critical saturation ratio X c > 1 is reached, a condensation discontinuity of the expansion type is part of the solution. Numerical simulation, using a simple relaxation model, indicates that time has to proceed over more then two decades of characteristic times of condensation before the self-similar solution can be recognized. Experimental results on heterogeneous nucleation and condensation caused by an unsteady rarefaction wave in a mixture of water vapour, nitrogen gas and chromium-oxide nuclei are presented. The results are fairly well described by the numerical relaxation model. No plateau formation could be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oswatitsch, K.: Kondensationserscheinungen in Überschalldüsen. ZAMM 22 (1942) 1–14.

    Article  Google Scholar 

  2. Wegener, P.P.: Water vapor condensation process in supersonic nozzles. J. Appl. Phys. 25 (1954) 1485–1491.

    Article  ADS  Google Scholar 

  3. Belenky, S.Z.: Condensational jumps. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 48 (1945) 165–167.

    Google Scholar 

  4. Heybey, W.H.; Reed, S.G. Jr.: Weak detonations and condensation shocks. J. Appl. Phys. 26 (1955) 969–974.

    Article  ADS  Google Scholar 

  5. Wegener, P.P.; Lundquist, G.: Condensation of water vapor in the shock tube below 1500K. J. Appl. Phys. 22 (1951) 233.

    Article  ADS  Google Scholar 

  6. Sislian, J.P.: Condensation of water vapour with or without a carrier gas in a shock tube. Institute for aerospace studies, univ. of Toronto, report no. 201 (1975).

    Google Scholar 

  7. Glass, I.I.; Kalra, S.P.; Sislian, J.P.: Condensation of water vapor in rarefaction waves. III. Experimental results. AIAA J. 15 (1977) 686–693.

    Article  ADS  Google Scholar 

  8. Smolders, H.J.; Willems, J.F.H.; de Lange, H.C.; van Dongen, M.E.H.: Wave induced growth and evaporation of droplets in a vapour-gas mixture. Proc. 17th Int. Symp. Shock Waves and Shock Tubes, Ed. Kim,Y.W.; LeHigh Univ. (1989).

    Google Scholar 

  9. Landau, L.D.; Lifshitz, E.M.: Fluid Mechanics, Volume 6 of Course of Theoretical Physics, Pergamon Press (1959) 327–329, 496–498.

    ADS  Google Scholar 

  10. Hayes, W.D. in Fundamentals of Gasdynamics. Ed. Emmons, H.W., Princeton, New Jersey: Princeton University Press (1958) 442–448.

    Google Scholar 

  11. Chorin, A.J.: Random choice solution of hyperbolic systems. J. Comp. Phys. 22 1976 ) 517–533.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Sod, G.A.: A numerical study of a converging cylindrical shock. J. Fluid Mech. 83 (1977) 785–794.

    Article  MATH  ADS  Google Scholar 

  13. Goossens, H.W.J.; Cleijne, J.W.; Smolders, H.J.; van Dongen, M.E.H.: Shock wave induced evaporation of water droplets in a gas-droplet mixture. Exp. Fluids 6 (1988) 561–568.

    Article  Google Scholar 

  14. Goossens, H.W.J.; van Dongen, M.E.H.: A quantitative laser-interferometric measurement of gas density in a gas-particle mixture. Exp. Fluids 5, (1987) 189–192.

    Article  Google Scholar 

  15. Zel’dovich, Ya.B.; Raizer, Yu.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Volume II. Academic Press (1967) 757–762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smolders, H.J., Niessen, E.M.J., van Dongen, M.E.H. (1990). On the Similarity Character of an Unsteady Rarefaction Wave in a Gas-Vapour Mixture with Condensation. In: Meier, G.E.A., Thompson, P.A. (eds) Adiabatic Waves in Liquid-Vapor Systems. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83587-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83587-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83589-6

  • Online ISBN: 978-3-642-83587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics