Skip to main content

Ion Transport in Mutant Cell Lines: Possibilities for Analysis

  • Chapter
Epithelial Secretion of Water and Electrolytes

Abstract

Two reasons can be identified which make a study of ion transport in mutant cell lines of importance. First, mutants provide the first stage for molecular genetic studies from which the molecular identification of the transporting proteins can eventually be derived. Incidentally, if the phenotypic characteristics of the mutant are sufficiently different from the wild type, then important aspects of cell function overall may be revealed. The second reason, which is not unconnected with the first, is that a number of identifiable disease states appear to be associated with a mutation affecting cellular transport mechanisms. The obvious examples are cystic fibrosis and chloridorrhoea.

Work from the authors laboratory referred to in this review was supported by NIH HL17705.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron WF (1983) Transport of H+ and of ionic weak acids and bases. J Membr Biol 72: 1–16

    Article  Google Scholar 

  • Barthelson R, Widdicombe J (1987) Cyclic adenosine monophosphate-dependent kinase in cystic fibrosis tracheal epithelium. J Clin Invest 80: 1799–1802

    Article  PubMed  CAS  Google Scholar 

  • Berschneider HM, Knowles MR, Azizkhan RG, Boucher RC, Tobey NA, Orlando RC, Powell DW (1988) Altered intestinal chloride transport in cystic fibrosis. FASEB J 2: 2625–2629

    PubMed  CAS  Google Scholar 

  • Boucher RC, Stutts MJ, Knowles MR, Cautley L, Gatzy JT (1986) Sodium transport in cystic fibrosis epithelia: abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78: 1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Brayden DJ, Hanley MR, Thastrup O, Cuthbert AW (1989) Thapsigargin, a new calcium dependent epithelial anion secretagogue. Br J Pharmacol 98: 809–816

    PubMed  CAS  Google Scholar 

  • Cuthbert A, Cuthbert AW (1978) Fertilization acid production in psammechinus eggs under pH-clamp conditions, and the effects of some pyrazine derivatives. Exp Cell Res 114: 409–415

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert AW, Egleme C, Greenwood H, Hickman ME, Kirkland SC, McVinish LJ (1987) Calcium- and cyclic AMP-dependent chloride secretion in human colonic epithelia. Br J Pharmacol 91: 503–515

    PubMed  CAS  Google Scholar 

  • Franchi A, Cragoe E, Pouysségur J (1986a) Isolation and properties of fibroblast mutants over expressing an altered Na+/H+ antiporter. J Biol Chem 261: 14614–14620

    PubMed  CAS  Google Scholar 

  • Franchi A, Perucca-Lostaneen D, Pouysségur J (1986 b) Functional expression of a human Na+/H+ antiporter gene transfected into antiporter-deficient mouse L cells. Proc Natl Acad Sci USA 83: 9388–9392

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Rechkemmer G, Shoemaker RL (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233: 558–560

    Article  PubMed  CAS  Google Scholar 

  • Gargus JJ (1987a) Mutant isolation and genes transfer as tools in study of transport proteins. Am J Physiol 252: C457–C467

    PubMed  CAS  Google Scholar 

  • Gargus JJ (1987 b) Selectable mutations altering two mechanisms of mammalian K+ transport are dominant. Am J Physiol 252: C515–C522

    PubMed  CAS  Google Scholar 

  • Gargus JJ, Coronado A (1985) A selectable mutation alters the conductance of a mammalian K+ channel. Fed Proc 44: 1901

    Google Scholar 

  • Gargus JJ, Miller JL, Slageman CW, Adelberg EA (1978) Genetic alterations in potassium transport in L-cells. Proc Natl Acad Sci USA 75: 5589–5593

    Article  PubMed  CAS  Google Scholar 

  • Giesen-Crouse EM, McRoberts JA (1987) Coordinate expression of piretanide receptors and Na+, K+, Cl cotransport activity in Madin-Darby canine kidney cell mutants. J Biol Chem 262: 17393–17397

    PubMed  CAS  Google Scholar 

  • Johnson J, Epel D, Paul M (1976) Intracellular pH and activation of sea urchin eggs after fertilisation. Nature 262: 661–664

    Article  PubMed  CAS  Google Scholar 

  • Kirkland SC (1985) Dome formation by a human adenocarcinoma cell line (HCA-7). Cancer Res 45: 3790–3795

    PubMed  CAS  Google Scholar 

  • Kirschner LB (1979) Extrarenal action of amiloride in aquatic animals. In: Cuthbert AW, Fanelli GM, Scriabine A (eds) Amiloride and epithelial sodium transport. Urban and Schwarzenberg, Baltimore, pp 41–49

    Google Scholar 

  • L’Allemain G, Franchi A, Cragoe E, Pouysségur J (1984) Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. J Biol Chem 259:4313–4319

    PubMed  Google Scholar 

  • Li M, McCann JD, Leidtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic-AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331: 358–360

    Article  PubMed  CAS  Google Scholar 

  • McRoberts JA, Tran CT, Saier MH (1983) Characterisation of low potassium-resistant mutants of the Madin-Darby kidney cell line with defects in NaCl/KCl symport. J Biol Chem 258: 12320–12326

    PubMed  CAS  Google Scholar 

  • Mitas M, Gargus JJ (1985) Successful DNA-mediated transfer of a mammalian gene encoding a potassium transport system. J Gen Physiol 86: 34A

    Google Scholar 

  • Pouysségur J (1985) The growth factor-activatable Na+/H+ exchange system: a genetic approach. Trends in Biochem Sci 10: 453–455

    Article  Google Scholar 

  • Pouysségur J, Chambard JC, Franchi A, Paris S, van Obberghen-Schilling E (1982) Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation. Proc Natl Acad Sci USA 79: 3935–3939

    Article  PubMed  Google Scholar 

  • Pouysségur J, Sardet C, Franchi A, L’Allemain G, Paris S (1984) A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci USA 81: 4833–4837

    Article  PubMed  Google Scholar 

  • Schaefer WH, Hinrichsen RD, Burgess-Cassler A, Ching Kung Blair IA, Watterson DM (1987) A mutant Paramecium with a defective calcium-dependent potassium conductance has an altered calmodulin: A non-lethal selective alteration in calmodulin regulation. Proc Natl Acad Sci USA 84: 3931–3935

    Article  PubMed  CAS  Google Scholar 

  • Shayman JA, Morrison AR (1985) Bradykinin-induced changes in phosphatidyl inositol turnover in cultured rabbit papillary collecting tubule cells. J Clin Invest 76: 978–984

    Article  PubMed  CAS  Google Scholar 

  • Shayman JA, Hruska KA, Morrison AR (1986) Bradykinin stimulates increased intracellular calcium in papillary collecting tubules of the rabbit. Biochem Biophys Res Commun 134:299–304

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341

    PubMed  CAS  Google Scholar 

  • Sussman I, O’Brien TG (1985) Characterisation of a BALB/c3T3 preadipose cell mutant with altered Na+ K+ Cl- cotransport activity. J Cell Physiol 124: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Liedtke CM (1986) Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Wohiwend A, Vassalli JD, Belin D, Orci L (1986) LLC-PK1 cells: cloning of phenotypically stable subpopulations. Am J Physiol 250: C682–C687

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Cuthbert, A.W. (1990). Ion Transport in Mutant Cell Lines: Possibilities for Analysis. In: Young, J.A., Wong, P.Y.D. (eds) Epithelial Secretion of Water and Electrolytes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75033-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75033-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75035-9

  • Online ISBN: 978-3-642-75033-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics