Skip to main content

DNA — Information and Aging: The Balance Between Alteration and Repair

  • Conference paper

Abstract

The unique role of DNA in transfering genetic information from cell to cell and from generation to generation in evolution means that it is necessary to preserve the integrity of DNA molecules and their nucleotide sequences throughout millions of years and billions of replications. The complementarity of nucleotide base pairs in a double helix provides the main mechanism of the high accuracy of replication, but the potential of the hydrogen-bonded base pair complementarity alone would never be enough for this “thread of life” to preserve life on Earth in conditions where numerous environmental hazards, UV radiation, ionising radiation, free radicals, chemicals, and variations in temperature permanently produce changes in functional DNA molecules and errors during their replication. The highly efficient correction of DNA sequence errors is, therefore, absolutely essential and very many biochemical systems exist in cells and their nuclei for this purpose. The DNA repair system in prokaryotes and in germ cells of eukaryotes needs to preserve the integrity of genetic information over long evolutionary periods. However, somatic cells which function for only days, months or years and leave no progeny after the death of individual organisms do not need the same level of efficiency of correction of DNA sequence errors. Kirkwood and Holliday (1979) have suggested that a lower level of accuracy in synthesis and repair of macromolecules in somatic cells is (as compared with germ cells) an adaptation which saves energy; they postulate that aging occurs as a consequence (Kirkwood 1977; Kirkwood and Holliday 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RLP, Burdon RH (1985) The molecular biology of DNA methylation. Springer, New York Berlin

    Book  Google Scholar 

  • Adelman RC (1971) Age-dependent effects in enzyme induction - a biochemical expression of aging. Exp Gerontol 6: 75–87

    Article  PubMed  CAS  Google Scholar 

  • Agarwal SS, Tuffner M, Loeb LA (1978) DNA replication in human lymphocytes during aging. J Cell Physiol 96: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Alexander P (1967) The role of DNA lesions in the process leading to ageing in mice. In: Woolhouse HW (ed) Aspects of the biology of ageing. Cambridge University Press, Cambridge, pp 29–50

    Google Scholar 

  • Barton RW, Yank WK (1975) Low molecular weight DNA polymerase: decreased activity in spleens of old mice. Mech Ageing Dev 4: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Bradley MO, Erickson LC, Kohn KW (1976) Normal DNA strand rejoining and absence of DNA cross-linking in progeroid and aging human cells. Mutat Res 37: 279–292

    Article  PubMed  CAS  Google Scholar 

  • Brosius S, Grosse F, Krauss G (1983) Subspecies of DNA polymerase-a from calf thymus with different fidelity in copying synthetic template primers. Nucleic Acids Res II: 193–202

    Google Scholar 

  • Brown WT, Ford JP, Gershey EL (1980) Variations of DNA repair capacity in progeria cells unrelated to growth conditions. Biochem Biophys Res Commun 97: 347–353

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Srivastava BIS (1986) Fragmentation of DNA and chromatin during senescence in barley leaves. Mech Ageing Dev 34: 57–61

    Article  PubMed  CAS  Google Scholar 

  • Chestanga CJ, Boyd V, Peterson L, Rusholow K (1975) Single-stranded regions in DNA of old mice. Nature 253: 130–131

    Article  Google Scholar 

  • Chestanga CJ, Tuttle M, Jacoboni A (1976) Changes in structural integrity of heart DNA from aging mice. Life Sci 18: 1405–1412

    Article  Google Scholar 

  • Chestanga CJ, Tuttle M, Jacoboni A, Johnson C (1977) Age-associated structural alterations in senescent mouse brain DNA. Biochim Biophys Acta 474: 180–187

    Google Scholar 

  • Cleaver JE (1967) Thymidine metabolism and cell kinetics. North Holland, Amsterdam

    Google Scholar 

  • Cleaver JE (1984) DNA repair deficiencies and cellular senescence are unrelated in Xerodermia pigmentosum cell lines. Mech Ageing Dev 27: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Collier JE, Popp DM, Lee WH, Regan JD (1982) DNA repair in a congeneic pair of mice with different longevities. Mech Ageing Dev 19: 141–156

    Article  PubMed  CAS  Google Scholar 

  • Collins JM, Chu AK (1985) Reduction of DNA synthesis in aging but still proliferating cells. J Cell Physiol 124: 165–173

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG (1976) Cross-linkage hypothesis of aging; DNA adducts in chromatin as a primary aging process. In: Smith KC (ed) Proteins and other adducts to DNA. Their significance to ageing, carcinogenesis and radiation biology. Plenum, New York, pp 443–493

    Google Scholar 

  • Cutler RG (1979) Evolution of human longevity: a critical overview. Mech Ageing Dev 9: 337–354

    Article  PubMed  CAS  Google Scholar 

  • Dean RG, Cutler RG (1978) Absence of significant age-dependent increase of single-stranded DNA extracted from mouse liver nuclei. Exp Gerontol 13: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Dell’Orco RT, Anderson LE (1981) Unscheduled DNA synthesis in human diploid cells of different donor ages. Cell Biol Intern Rep 5: 359–364

    Article  Google Scholar 

  • Drake JW (1969) Comparative rates of spontaneous mutations. Nature 221: 1132

    Article  PubMed  CAS  Google Scholar 

  • Eichorn GL (1979) Aging, genetics and the environment.Potential of errors introduced into genetic information transfer by metal ions. Mech Ageing Dev 9: 291–301

    Article  Google Scholar 

  • Fairweather DS, Fox M, Margison GP (1987) The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation. Exp Cell Res 168: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Falzone JA, Samids HV, Wulff VJ (1967) Cellular compensations and controls in the aging process. J Gerontol 22: 4 (part II) 42–51

    Google Scholar 

  • Fersht AR, Knill-Jones JW (1983) Fidelity of replication of bacteriophage 0X174 DNA in vitro and in vivo. J Mol Biol 165: 633–654

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1979) Susceptibility of mouse liver DNA to digestion by SI nuclease: absence of age-related change. Age 2: 45–46

    Article  CAS  Google Scholar 

  • Francis AA, Lee WH, Regan JD (1981) The relationship of DNA excision repair of ultraviolet- induced lesions to the maximum lifespan of mammals. Mech Ageing Dev 16: 181–189

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Loeb LA, Martin GM (1981) On the activity and fidelity of chromatin-associated hepatic DNA polymerase-a in aging murine species of different life span. J Cell Physiol 106: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Higashikawa T, Tatsumi M (1977) A retarded rate of DNA replication and normal level of DNA repair in Werner’s syndrome fibroblasts in culture. J Cell Physiol 92: 365–374

    Article  PubMed  CAS  Google Scholar 

  • Gensler HL (1981) The effect of hamster age on UV-induced unscheduled DNA synthesis in freshly isolated lung and kidney cells. Exp Gerontol 16: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Gensler HL, Bernstein H (1981) DNA damage as the primary cause of aging. Q Rev Biol 56: 279–303

    Article  PubMed  CAS  Google Scholar 

  • Glaser VM, Luchnik AN (1982) Decrease in the density of DNA topological turns during in vitro ageing of Syrian hamster cells. Exp Cell Res 139: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Goldstein BI, Rud SG, Polyakova LL (1966) Age changes of iron content in tissues and DNA of white rats. Vopr Med Khim 12: 618–621

    Google Scholar 

  • Grossman L (1981) Enzymes involved in the repair of damaged DNA. Arch Biochem Biophys 211: 511–522

    Article  PubMed  CAS  Google Scholar 

  • Hall JD, Almy RE, Scherer KL (1982) DNA repair in cultured human fibroblasts does not decline with donor age. Exp Cell res 139: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Hall K, Hart RW, Benirschke AK, Walford RL (1984) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species’ maximum achievable life span. Mech Ageing Dev 24: 163–173

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka F, Sayato J, Arai H, Hasegawa N, Inui N, Mitsui Y, Yamada MA (1983) Changes in DNA polymerase-α, ß, δ in mouse liver as a function of age. Mech Ageing Dev 23: 315–327

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc Natl Acad Sci USA 71: 2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Trosko JE (1976) DNA repair processes in mammals. Interdiscipl Topics Gerontol 9: 134–167 ( Karger, Basel )

    Google Scholar 

  • Hart RW, Turturro A (1981) Evolution and longevity-assurance processes. Naturwissenschaften 68: 552–557

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, D’Ambrosio SM, Ng KJ, Modak SP (1979a) Longevity, stability and DNA repair. Mech Ageing Dev 9: 203–223

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Sacher GA, Hoskins TL (1979b) DNA repair in short- and long-lived rodent species. J Gerontol 34: 808–817

    PubMed  CAS  Google Scholar 

  • Hasegawa N, Hanaoka F, Yamada M (1985) Does capacity of DNA replication change during in vitro ageing? Exp Cell Res 156: 478–486

    Article  PubMed  CAS  Google Scholar 

  • Hennis HL III, Braid HL, Vincent RA Jr (1981) Unscheduled DNA synthesis in cells of different shape in fibroblast cultures from donors of various ages. Mech Ageing Dev 16: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Henson P (1978) The presence of single stranded regions in mammalian DNA. J Mol Biol 119: 487–506

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1985) The significance of DNA methylation in cellular aging. In: Woodhead AO, Blackett AD, Hollaender A (eds) Molecular biology of aging. Plenum, New York, pp 269–283

    Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187: 226–232

    Article  PubMed  CAS  Google Scholar 

  • Hübscher U (1983) DNA polymerases in prokaryotes and eukaryotes: mode of action and biological implications. Experientia 39: 1–25

    Article  PubMed  Google Scholar 

  • Ishikawa T, Tadayama S, Kitagawa T (1978) Autoradiographic demonstration of DNA repair synthesis in ganglion cells of aquarium fish at various age in vivo. Virchows Arch [Cell Pathol] 28: 235–242

    CAS  Google Scholar 

  • Johnson R, Chrisp C, Strehler BL (1972) Selective loss of ribosomal RNA genes during the aging of post mitotic tissues. Mech Ageing Dev 1: 183–198

    Article  CAS  Google Scholar 

  • Karron P, Ormerod MG (1973) Is the ability to repair damage to DNA related to the proliferative capacity of the cell? Biochim Biophys Acta 299: 54–64

    Google Scholar 

  • Kato H, Harada M, Tsuchiya K, Moriwaki K (1980) Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and the life span of the donor species. Jpn J Genet 55: 99–108

    Article  Google Scholar 

  • Kempf CH, Schmitt M, Danse JM, Kempf J (1984) Correlation of DNA repair synthesis with ageing in mice, evidenced by quantitative autoradiography. Mech Ageing Dev 26: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Kennah HE, Coetzee ML, Ove P (1985) A comparison of DNA repair synthesis in primary hepatocytes from young and old rats. Mech Ageing Dev 29: 283–298

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TBL (1977) Evolution of ageing. Nature 270: 301–304

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TBL (1981) Repair and its evolution: survival versus reproduction. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford, pp 165–194

    Google Scholar 

  • Kirkwood TBL, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond [Biol] 205: 531–546

    Article  CAS  Google Scholar 

  • Klass M, Nguyen PN, Dechavingny A (1983) Age-correlated changes in the DNA template in the nematode Caenorhabatis elegans. Mech Ageing Dev 22: 253–263

    Article  PubMed  CAS  Google Scholar 

  • Kolata C (1985) Fitting methylation into development. Science 228: 1183–1184

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of reproduction. Nature, 336: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Lawson T, Stohs S (1985) Changes in endogenous DNA damage in aging mice in response to butylated hydroxyanisole and oltipraz. Mech Ageing Dev 30: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Lee MYWT, Tan CK, So AG, Downey KM (1980) Purification of deoxyribonucleic acid polymerase-ö from calf thymus: partical characterization of physical properties. Biochemistry 19: 2096–2101

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1976) New class of enzymes acting on damaged DNA. Nature 259: 64–66

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1987) Regulation and deficiencies in DNA repair. Br J Cancer 56: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610–3618

    Article  PubMed  CAS  Google Scholar 

  • Linn S, Kairis M, Holliday R (1976) Decreased fidelity of DNA polymerase activity isolated from human fibroblasts. Proc Natl Acad Sci USA 73: 2818–2822

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA, Kunkel TA (1982) Fidelity of DNA synthesis. Ann Rev Biochem 52: 429–457

    Article  Google Scholar 

  • Loeb LA, Reyland ME (1987) Fidelity of DNA synthesis. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol. I. Springer, Berlin Heidelberg New York, pp 156–173

    Google Scholar 

  • Makinodan T, Peterson WJ, Baumgartner W, Kay MM (1977) Accumulation of DNA strand breaks with age in the liver and related organs. In: Platt D (ed) Liver and ageing. Schattauer, Stuttgart, pp 153–159

    Google Scholar 

  • Maslansky CJ, Williams GM (1985) Ultraviolet light-induced DNA repair synthesis in hepatocytes from species of different longevities. Mech Ageing Dev 29: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Massie HR, Baird MB, Nicolosi BJ, Samis HV (1972) Changes in the structure of rat liver DNA in relation to age. Arch Biochem Biophys 153: 733–741

    Article  Google Scholar 

  • Massie HR, Baird MB, McMahon MM (1975) Changes in the structure of the DNA of Drosophila melanogaster during development and aging. Mech Ageing Dev 4: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Medvedev ZA (1984) Age changes of chromatin. A review. Mech Ageing Dev 28: 139–154

    Article  PubMed  CAS  Google Scholar 

  • Mitchinson JM (1971) The biology of the cell cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Modrich P (1987) DNA mismatch correction. Ann Rev Biochem 56: 435–466

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Goto S (1982) Estimation of the single-stranded region in the nuclear DNA of mouse tissues during aging with special reference to the brain. Arch Geront Geriatr I: 143–150

    Google Scholar 

  • Müller WEG, Zahn RK, Geurtsen W, Munsch N (1980) Age dependent aterations of DNA synthesis. Terminal deoxynucleotidyl transferase and DNA polymerase activities in bone marrow subpopulations from mice. Mech Ageing Dev 13: 119–126

    Google Scholar 

  • Murray V (1981) Properties of DNA polymerases from young and ageing human fibroblasts. Mech Ageing Dev 16: 327–343

    Article  PubMed  CAS  Google Scholar 

  • Murray V, Holliday R (1981) Increased error frequency of DNA polymerases from senescent human fibroblasts. J Mol Biol 146: 55–76

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Shima A, Fukuda M, Fujita S (1979) Age-associated increase of single-stranded regions in the DNA of mouse brain and liver cells. Mech Ageing Dev 10: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Niedermüller H, Hoffecker G, Skalicky M (1985) Changes of DNA repair mechanisms during the aging of the rat. Mech Ageing Dev 29: 221–238

    Article  PubMed  Google Scholar 

  • Oesch F, Aulmann W, Platt KL, Doerjer G (1987) Individual differences in DNA repair capacities in man. Arch Toxicol [Suppl] 10: 172–179

    Article  CAS  Google Scholar 

  • Ono T, Okada S (1976) Comparative studies of DNA size in various tissues of mice during the aging process. Exp Gerantol II: 127–132

    Google Scholar 

  • Ono T, Tawa R, Shinya K (1986) Methylation of the C-myc gene changes during aging process of mice. Biochem Biophys Res Comm 139: 1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Ove P, Goetzee ML (1978) A difference in bleomycin-induced DNA synthesis between liver nuclei from mature and old rats. Mech Ageing Dev 8: 363–375

    Article  PubMed  CAS  Google Scholar 

  • Paffenholz V (1978) Correlation between DNA repair of embryonic fibroblasts and different life span of 3 inbred mouse strains. Mech Ageing Dev 7: 131–150

    Article  PubMed  CAS  Google Scholar 

  • Piantanelli L, Brogli R, Bevilacqua P, Fabris N (1978) Age-dependance of isoproterenol-induced DNA synthesis in sumandibular glands of BALB/c mice. Mech Ageing Dev 7: 162–169

    Google Scholar 

  • Plesko M, Richardson A (1984) Age-related changes in unscheduled DNA synthesis by rat hepatocytes. Biochem Biophys Res Comm 118: 730–735

    Article  PubMed  CAS  Google Scholar 

  • Poison CDA, Webster GC (1982) Age-related DNA fragmentation in two varieties of Drosophila melanogaster, Phaseolus (coteledons) and three tissues of the mouse. Exp Gerontol 17: 11–17

    Google Scholar 

  • Price GB, Makinodan T (1973) Aging: alteration of DNA-protein information. Gerontologia 19: 58–70

    Article  Google Scholar 

  • Price GB, Modak SP, Makinodan T (1971) Age-associated changes in the DNA of mouse tissues. Science 171: 917–920

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Cedar H (1984) DNA methylation in eukayotic cells. Int Rev Cytol 92: 159–187

    Article  PubMed  CAS  Google Scholar 

  • Regan JD, Cook JS, Lee WH (1968) Photoreactivation of amphibian cells in culture. J Cell Physiol 71: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Rothstein M (1982) DNA. In: Biochemical Approaches to Aging, pp 132–173. Academic Press. New York

    Google Scholar 

  • Robbins JH (1978) Significance of repair of human DNA: evidence from studies Xeroderma pigmentosum. J Natl Cancer Inst 61: 645–655

    PubMed  CAS  Google Scholar 

  • Romanov GA, Vanyushin BF (1981) Methylation of reiterated sequences in mammalian DNAs. Effect of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta 653: 204–218

    Google Scholar 

  • Samis HV, Falzone JA, Wulff VJ (1966) H3-Thymidine incorporation and mitotic activity in liver of rats various ages. Gerontologia 12: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Shearman CW, Loeb LA (1977) Depurination decreases fidelity of DNA synthesis in vitro. Nature 270: 337–338

    Article  Google Scholar 

  • Singhal RP, Mays-Hoopes LL, Eichhorn GL (1987) DNA methylation in aging of mice. Mech Ageing Dev 41: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Smith-Sonneborn J, Klass M (1974) Changes in the DNA synthesis pattern of Paramecium with increased clonal age and interfission time. J Cell Biol 61: 591–598

    Article  PubMed  CAS  Google Scholar 

  • So AG, Downey KM (1988) Mammalian DNA polymerases a and d: current status in DNA replication. Biochemistry 27: 4991–4995

    Article  Google Scholar 

  • Strauss BS (1985) Cellular aspects of DNA repair. Adv Cancer Res 45: 45–101

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL, Chang MP, Johnson LK (1979) Loss of hybridizable ribosomal DNA from human post-mitotic tissues during aging: I. Age-dependent loss in human myocardium. Mech Ageing Dev 11: 371–378

    Google Scholar 

  • Struchkov VA (1962) On nature of superpolymer DNA. Biophysica (Moscow) 7: 538–550

    CAS  Google Scholar 

  • Su CHM, Brash DE, Turturo A, Hart RW (1984) Longevity-dependent organ-specific accumu-lation of DNA damage in two closely related murine species. Mech Ageing Dev 27: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Swenberg SA, Fennell TR (1987) DNA damage and repair in mouse liver. Arch Toxicol [Suppl] 10: 162–171

    Article  CAS  Google Scholar 

  • Targovnik HS, Locher SE, Hart TF, Hariharan PV (1984) Age-related changes in the excision repair capacity of Turbatrix aceti. Mech Ageing Dev 27: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Tice RR (1978) Aging and DNA repair capability. In: Schneider EL (ed) The genetics of aging. Plenum, New York, pp 53–89

    Google Scholar 

  • Treton JA, Courtois Y (1982) Correlation between DNA excision repair and mammalian lifespan in lens epithelial cells. Cell Biol Int Rep 6: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Turner DR, Morley AA, Seshadri RS, Sorrell JR (1981) Age-related variations in human lymphocyte DNA. Mech Ageing Dev 17: 305–309

    Article  PubMed  CAS  Google Scholar 

  • Turner DR, Griffith VC, Morley AA (1982) Ageing in vivo does not alter the kinetics of DNA strand break repair. Mech Ageing Dev 19: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin BF, Nemirovsky LE, Belozersky AN (1973) The 5-methylcytosine in DNA of rats: tissue and age specificity. Gerontologia 19: 138–152

    Article  PubMed  CAS  Google Scholar 

  • von Hahn HP (1970) Structural and functional changes in nucleoprotein during ageing of the cell. Gerontologia 16: 116–128

    Article  Google Scholar 

  • Wegener K, Hollweg S, Maurer W (1964) Autoradiographische Bestimmung der DNA-Verdopp- lungszeit und anderer Teil-phasen des Zell-zyklus bei fetalen Zellarten der Ratte. Z Zellforsch Mikrosk Anat 63: 309–326

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KT, Lett JT (1972) Formation and rejoining of DNA strand breaks in irradiated neurons in vivo. Radiat Res 52: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KT, Lett JT (1974) On the possibility that DNA repair is related to age in non-dividing cells. Proc Natl Acad Sci USA 71: 1862–1865

    Article  PubMed  CAS  Google Scholar 

  • Williams JR, Dearfield KL (1981) DNA damage and repair in aging mammals. In: Florini JR (ed) CRC handbook of biochemistry in aging. CRC, Boca Raton, Florida, pp 25–48

    Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in ageing but not in immortal cells. Science 220: 1055–1057

    Article  PubMed  CAS  Google Scholar 

  • Woodhead AD, Setlow RB, Grist E (1980) DNA repair and longevity in three species of cold blooded vertebrates. Exp Gerontol 15: 301–304

    Article  PubMed  CAS  Google Scholar 

  • Wright JR, Stephens RE, Ford KC, Thibert P, Yates AJ (1986) DNA excision repair in spontaneously diabetic BB Wistar rats. Mech Ageing Dev 36: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Zahn RK (1983) Measurement of the molecular weight distributions in human muscular deoxyribonucleic acid. Mech Ageing Dev 22: 355–379

    Article  PubMed  CAS  Google Scholar 

  • Zahn RK, Reinmtiller J, Beyer R, Poneljak V (1987) Age-correlated DNA damage in human muscle tissue. Mech Ageing Dev 41: 73–114

    Article  PubMed  CAS  Google Scholar 

  • Zweidler A (1984) Core histone variants of the mouse; primary structure and differential ex-pression. In: Stein GS (ed) Histone genes and histone gene expression. Wiley, New York, pp 373–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medvedev, Z.A. (1989). DNA — Information and Aging: The Balance Between Alteration and Repair. In: Platt, D. (eds) Gerontology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74996-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74996-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74998-8

  • Online ISBN: 978-3-642-74996-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics