Skip to main content

Antitumor Effect of Drugs Interfering with Mitochondrial Biogenesis

  • Conference paper
Molecular Basis of Membrane-Associated Diseases

Abstract

Most of the rapidly growing tumors have a high capacity of aerobic glycolysis. Warburg’s hypothesis explaining this phenomenon by an impaired respiratory capacity of tumor cells attracted much attention in the past. The attempts to define the supposed defect(s) in oxidative metabolism of cancer cells were unsuccessful. Tumor mitochondria differ often very significantly from the organelles of the tissue of origin [review in 1]. These differences probably do not account for the altered, relative contributions of oxidative phosphorylation and glycolysis to the total cellular energy production in rapidly growing tumors. More relevant to the altered pattern of the tumor energy metabolism seems to be the diminished content of mitochondria in tumor cells, especially in the cells of rapidly growing tumors [review in 1]. In spite of their low content the organelles are indispensable to tumor energetics; even in the highly glycolyzing tumors oxidative phosphorylation covers no less than 50% of the energy demands of the cells [2]. Lower capacity of oxidative phosphorylation accompanying the reduced content of mitochondria in tumor cells has been employed in developing a new approach to cancer chemotherapy by using drugs interfering with the formation of functional mitochondria [3–5]. This communication deals with the mechanism by which inhibitors of mitochondrial biogenesis exert their antitumor effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Progr Exp Tumor Res 22:190–274

    PubMed  CAS  Google Scholar 

  2. Aisenberg AC (1961) The glycolysis and respiration of tumors. Academic Press, New York London

    Google Scholar 

  3. Van den Bogert C, Dontje BHJ, Wybegna JJ, Kroon AM (1981) Arrest of in vivo proliferation of Zajdela tumor cells by inhibition of mitochondrial protein synthesis. Cancer Res 41:1943–1947

    PubMed  Google Scholar 

  4. Van den Bogert C, Dontje BHJ, Kroon AM (1985) The antitumour effect of doxycycline on a T-cell leukemia in the rat. Leukemia Res 9:617–623

    Article  Google Scholar 

  5. Van den Bogert C, Dontje BHJ, Kroon AM (1983) Arrest of in vivo growth of a solid Leydig cell tumor by prolonged inhibition of mitochondrial protein synthesis. Cancer Res 43:2247–2251

    PubMed  Google Scholar 

  6. Schatz G, Mason TL (1974) The biosynthesis of mitochondrial proteins. Annu Rev Biochem 54:51–81

    Article  Google Scholar 

  7. Nelson BD (1987) Biogenesis of mammalian mitochondria. Curr Top Bioenerg 15:221–272

    CAS  Google Scholar 

  8. Anderson S, Bankier AT, Barrell BG, de Bruijn MMHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Sender PH, Smith AJM, Staden R, Young IG (1981) Sequence and organization of human mitochondrial genome. Nature (London) 290:457–465

    Article  CAS  Google Scholar 

  9. Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi Y, Hatefi Y, Doolitle RF, Attardi G (1985) Six unidentified reading frames of human mtDNA encode components of the respiratory-chain NADH dehydrogenase. Nature (London) 314:592–597

    Article  CAS  Google Scholar 

  10. Chomyn A, Cleeter MJW, Ragan CI, Riley M, Doolitle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH-dehydrogenase subunit. Science 234:614–618

    Article  PubMed  CAS  Google Scholar 

  11. de Vries H, Kroon AM (1970) On the effect of chloramphenicol and oxytetracycline on the biogenesis of mammalian mitochondria. Biochim Biophys Acta 204: 531–541

    Google Scholar 

  12. Kolarov J, Kuzela S, Wielburski A, Nelson BD (1981) Characterization of mitochondrial translation products in rat liver and rat hepatoma. FEBS Lett 126:61–65

    Article  PubMed  CAS  Google Scholar 

  13. Van den Bogert C, Holtrop M, de Vries H, Kroon AM (1985) Specific inhibition of mitochondrial protein synthesis influences the amount of complex I in mitochondria of rat liver and Neurospora crassa directly. FEBS Lett 192:225–229

    Article  PubMed  Google Scholar 

  14. Eisenstein RS, Harper AE (1984) Characterization of a protein synthesizing system from rat liver. Translation of endogenous and exogenous messenger RNA. J Biol Chem 259:9922–9928

    PubMed  CAS  Google Scholar 

  15. Kužela š, Luciaková K (1983) Energy deprivation of Zajdela hepatoma cells upon in vivo treatment with thiamphenicol. Neoplasma 30:651–657

    PubMed  Google Scholar 

  16. Roise D, Schatz G (1988) Mitochondrial presequences. J Biol Chem 263:4509–4511

    PubMed  CAS  Google Scholar 

  17. Schatz G (1987) Sir Hans Krebs lecture: signals guiding proteins to specific intramitochondrial locations. Eur J Biochem 165:1–6

    Article  PubMed  CAS  Google Scholar 

  18. Douglas MG, McCaramon MT, Vassarotti A (1986) Targeting proteins into mitochondria. Bacteriol Rev 50:166–178

    CAS  Google Scholar 

  19. Hurt EC, van Loon APGM (1986) How proteins find mitochondria and intramitochondrial compartments. Trends Biochem Sci 11:204–207

    Article  CAS  Google Scholar 

  20. Morita T, Mori M, Ikeda F, Tatibana M (1982) Transport of carbamyl phosphate synthetase I and omithine carbamylase into mitochondria. J Biol Chem 257:10547–10550

    PubMed  CAS  Google Scholar 

  21. Kolarov J, Nelson BD (1984) Import and processing of cytochrome bc1 subunits in isolated hepatoma ascites cells. Eur J Biochem 144:387–392

    Article  PubMed  CAS  Google Scholar 

  22. Gear ARL (1974) Rhodamine 6G a potent inhibitor of mitochondrial oxidative phosphorylation. J Biol Chem 249:3628–3637

    PubMed  CAS  Google Scholar 

  23. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA77:990–994

    Article  PubMed  CAS  Google Scholar 

  24. Bemal SD, Lampidis TJ, McIsaac RM, Chen LB (1983) Anticarcinoma activity in vivo of rhodamine 123, a mitochondria-specific dye. Science 222:169–171

    Article  Google Scholar 

  25. Lampidis TJ, Bernai SD, Summerhayes IC, Chen LB (1982) Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 43:716–720

    Google Scholar 

  26. Herr HW, Huffman JL, Huryk R, Heston WDW, Melamed MR, Whitmore Jr WF (1988) Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma. Cancer Res 48:2061–2063

    PubMed  CAS  Google Scholar 

  27. Wilkie D, Fearon K (1985) Mitochondria and cancer. In: Quagliariello E, Slater EC, Palmieri F, Saccone C, Kroon AM (eds) Achievements and perspectives of mitochondrial research, vol 2. Biogenesis. Elsevier, Amsterdam, pp 437–444

    Google Scholar 

  28. Kužela š, Joste V, Nelson BD (1986) Rhodamine 6G inhibits matrix-catalyzed processing of precursors of rat liver mitochondrial proteins. Eur J Biochem 154:553r–557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kužela, š., Luciaková, K., Kolarov, J., Nelson, B.D. (1989). Antitumor Effect of Drugs Interfering with Mitochondrial Biogenesis. In: Azzi, A., Drahota, Z., Papa, S. (eds) Molecular Basis of Membrane-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74415-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74415-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74417-4

  • Online ISBN: 978-3-642-74415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics