Skip to main content

Neural Mechanisms of Visual Course Control in Insects

  • Conference paper
Book cover Facets of Vision

Abstract

Visual orientation and course-stabilization of flying insects rely essentially on the evaluation of the retinal motion patterns perceived by the animals during flight. Apparent motions of the entire surrounding indicate the direction and speed of self-motion in space and are used as visual feedback signals during optomotor course-control manoeuvres. Discontinuities in the motion pattern and relative motions between pattern-segments indicate the existence of stationary or moving objects and represent the basic visual cues for flight-orientation during fixation-and tracking-sequences, and possibly also for the avoidance of obstacles, and the selection of landing sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blindH31. J Neurogenet 3:87–109.

    Article  PubMed  CAS  Google Scholar 

  • Bishop CA, Bishop LG (1981) Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. J Neurobiol 12:281–296.

    Article  PubMed  CAS  Google Scholar 

  • Blondeau J, Heisenberg M (1982) The three-dimensional torque system of Drosophila melanogaster. Studies on wildtype and the mutant optomotor-blindH31. J Comp Physiol A 145:321–329.

    Article  Google Scholar 

  • Borst A, Bahde S (1987) Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly. Biol Cybernet 56:217–224.

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybernet 56:209–215.

    Article  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybernet 24:85–101.

    Article  Google Scholar 

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York London, pp 561–621.

    Google Scholar 

  • Buchner E, Götz KG, Straub C (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol Cybernet 31:235–242.

    Article  CAS  Google Scholar 

  • Buchner E, Buchner S, Hengstenberg R (1979) 2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila. Science 205:687–688.

    Article  PubMed  CAS  Google Scholar 

  • Buchner E, Buchner S, Bülthor TI (1984) Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. I. Wildtype. J Comp Physiol A 155:471–483.

    Article  Google Scholar 

  • Burtt ET, Catton WT (1954) Visual perception of movement in the locust. J Physiol 125:566–580.

    PubMed  CAS  Google Scholar 

  • Collett TS (1970) Centripetal and centrifugal visual cells in medulla of the insect optic lobe. J Neurophysiol 33:239–256.

    PubMed  CAS  Google Scholar 

  • Collet TS (1971a) Visual neurons for tracking moving targets. Nature (London) 232:127–130.

    Article  Google Scholar 

  • Collett TS (1971b) Connections between wide-field monocular and binocular movement detectors in the brain of a hawk moth. Z Vergl Physiol 75:1–31.

    Article  Google Scholar 

  • Collett TS (1972) Visual interneurons in the anterior optic tract of the privet hawk moth. J Comp Physiol 78:396–433.

    Article  Google Scholar 

  • Collett TS (1980) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol A 140:145–158.

    Article  Google Scholar 

  • Collett TS, Blest AD (1966) Binocular, directionally selective neurons, possibly involved in the optomotor response of insects. Nature (London) 212:1330–1333.

    Article  CAS  Google Scholar 

  • Collett TS, King AJ (1975) Vision during flight. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 437–466.

    Google Scholar 

  • de Ruyter van Steveninck RR, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol Cybernet 54:223–236.

    Article  Google Scholar 

  • DeVoe R (1985) The eye: electrical activity. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Nervous system: sensory. Pergamon, Oxford, pp 277–354.

    Google Scholar 

  • DeVoe R, Kaiser W, Ohm J, Stone LS (1982) Horizontal movement detectors of honeybees: directionally-selective visual neurons in the lobula and brain. J Comp Physiol A 147:155–170.

    Article  Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly optic lobe. J Comp Physiol A 100:5–23.

    Article  Google Scholar 

  • Eckert H (1973) Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Eckert H (1980) Functional properties of the H1-neuron in the third optic ganglion of the blowtly, Phaenicia. J Comp Physiol A 135:29–39.

    Article  Google Scholar 

  • Eckert H (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J Comp Physiol A 143:511–526.

    Article  Google Scholar 

  • Eckert H, Bishop LG (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata (Diptera, Calliphoridae). J Comp Physiol A 126:57–86.

    Article  Google Scholar 

  • Eckert H, Hamdorf K (1981) The contrast frequency-dependence: A criterion for judging the non-participation of neurons in the control of behavioral response. J Comp Physiol A 145:241–247.

    Article  Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I: Behavioral constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybernet 52:123–140.

    Article  Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II: Figure-detection cells, a new class of visual interneurons. Biol Cybernet 52:195–208.

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III: Possible input circuitries and behavioral significance of the FD-cells. Biol Cybernet 52:267–280.

    Article  Google Scholar 

  • Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161:777–783.

    Article  Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybernet 56:69–87.

    Article  Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini N (1985) Early processing of color and motion in a mosaic visual system. Neurosci Res Suppl 2:17–49.

    Article  Google Scholar 

  • Frantsevich LI, Mokrushov PA (1977) Jittery movement fibres (JMF) in dragonfly nymphs: Stimulus surround interaction. J Comp Physiol A 120:203–214.

    Article  Google Scholar 

  • Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioral analysis after laser-surgical removal of interneurons. Biol Cybernet 44:141–149.

    Article  Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92.

    Article  PubMed  Google Scholar 

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208.

    Article  PubMed  Google Scholar 

  • Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) Biona-Report 2. Fischer, Stuttgart New York, pp 21–33.

    Google Scholar 

  • Götz KG, Buchner E (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol Cybernet 31:243–248.

    Article  Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybernet 35:101–112.

    Article  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In:Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York Toronto, pp 1–79.

    Chapter  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524.

    Google Scholar 

  • Hausen K (1976) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythocephala. Z Naturforsch 31c:629–633.

    Google Scholar 

  • Hausen K (1977) Signal processing in the insect eye. In: Stent GS (ed) Function and formation of neural systems. Dahlem Konf, Berlin, pp 81–110.

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981:49–70.

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol Cybernet 45:143–156.

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells:Receptive field organization and response characteristics. Biol Cybernet 46:67–79.

    Article  Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York London, pp 523–559.

    Google Scholar 

  • Hausen K (1987) The neural architecture of the lobula plate of the blowfly, Calliphora erythrocephala. Cell Tissue Res (submitted).

    Google Scholar 

  • Hausen K, Hengstenberg R (1987): Multimodal convergence of sensory pathways on motoneurons of flight muscles in the fly (Calliphora). Soc Neurosci Abstr 13:1059.

    Google Scholar 

  • Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc London Ser B 208:57–71.

    Article  Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc London Ser B 219:211–216.

    Article  Google Scholar 

  • Hausen K, Wehrhahn C (1987a) Neural control of flight-torque during visual orientation in flies. 1. Functional characteristics of visual interneurons and the yaw torque generating motor system. (in preparation).

    Google Scholar 

  • Hausen K, Wehrhahn C (1987b) Neural control of flight-torque during visual orientation in flies. 2. Separation of two control systems by selective lesions of visual pathways in the brain (in preparation).

    Google Scholar 

  • Hausen K, Wolburg-Buchholz K, Ribi WA (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res 208:371–387.

    Article  PubMed  CAS  Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) Biona-Report 2. Fischer, Stuttgart New York, pp 35–52.

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindH31-a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296.

    Article  Google Scholar 

  • Hengstenberg R (1981) Visuelle Drehreaktionen von Vertikalzellen in der Lobula-Platte von Calliphora. Verh Dtsch Zool Ges 1981:180.

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149:179–193.

    Article  Google Scholar 

  • Hengstenberg R (1984) Roll stabilization during flight of the blowfly’s head and body by mechanical and visual cues. In: Varjñ D, Schnitzler HU (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 121–134.

    Chapter  Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol A 149:163–177.

    Article  Google Scholar 

  • Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc London Ser B 227:455–482.

    Article  Google Scholar 

  • Horridge GA, Scholes JH, Shaw S, Tunstall J (1965) Extracellular recordings from single neurons in the optic lobe and brain of locust. In: Treherne JE, Beaument JWL (eds) Pap 12th Int Congr Entomology. Academic Press, London New York, pp 165–202.

    Google Scholar 

  • Järvilehto M (1985) The eye: vision and perception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Nervous system: sensory. Pergamon, Oxford, pp 355–429.

    Google Scholar 

  • Kaiser W, Bishop LG (1970) Directionally selective motion detecting units in the optic lobe of the honey bee. Z Vergl Physiol 67:403–413.

    Article  Google Scholar 

  • Kien J (1974) Sensory integration in the locust optomotor system. II. Direction selective neurons in the circumoesophageal connectives and the optic lobes. Vision Res 14:1255–1268.

    Article  PubMed  CAS  Google Scholar 

  • Kien J (1975) Neuronal mechanisms subserving directional selectivity in the locust optomotor system. J Comp Physiol A 102:337–355.

    Article  Google Scholar 

  • Kirschfeld K (1972) The visual system of Musca: Studies on optics, structure and function. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 63–74.

    Google Scholar 

  • Land MF (1977) Visually guided movements in invertebrates. In: Stent GS (ed) Function and formation of neural systems. Dahlem Konf, pp 161-177.

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behavior of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol 89:331–357.

    Article  Google Scholar 

  • Laughlin SB (1984) The roles of parallel channels in early visual processing by the arthropod compound eye. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York London, pp 457–481.

    Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc London Ser B 225:251–275.

    Article  Google Scholar 

  • Mastebroek HAK, Zaagman WH, Lenting BPM (1980) Movement detection: Performance of a wide-field element in the visual system of the blowfly. Vision Res 20:467–474.

    Article  PubMed  CAS  Google Scholar 

  • McCann GD, MacGinitie GF (1965) Optomotor response studies of insect vision. Proc R Soc London Ser B 163:369–401.

    Article  CAS  Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Milde J, Strausfeld NJ (1986) Visuo-motor pathways in arthropods. Naturwissenschaften 73:151–154.

    Article  Google Scholar 

  • Milde J, Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238.

    Article  Google Scholar 

  • Olberg RM (1981a) Object-and self-movement detectors in the ventral nerve cord of the dragonfly. J Comp Physiol A 141:327–334.

    Article  Google Scholar 

  • Olberg RM (1981b) Parallel encoding of direction of wind, head, abdomen, and visual pattern movement by single interneurons in the dragonfly. J Comp Physiol A 142:27–41.

    Article  Google Scholar 

  • Olberg RM (1986) Identified target-selective visual interneurons descending from the dragonfly brain. J Comp Physiol A 159:827–840.

    Article  Google Scholar 

  • O’Shea M, Rowell CHF (1975) Protection from habituation by lateral inhibition. Nature (London) 254:53–55.

    Article  Google Scholar 

  • Palka J (1969) Discrimination between movements of eye and object by visual interneurons of crickets. J Exp Biol 50:723–732.

    PubMed  CAS  Google Scholar 

  • Palka J (1972) Moving movement detectors. Am Zool 12:497–505.

    Google Scholar 

  • Pick B (1974) Visual flicker induces orientation behavior in the fly Musca. Z Naturforsch 29c:310–312.

    Google Scholar 

  • Pick B (1976) Visual pattern discrimination as an element of the fly’s orientation behavior. Biol Cybernet 23:171–180.

    Article  Google Scholar 

  • Pierantoni R (1976) A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tissue Res 171:101–122.

    Article  PubMed  CAS  Google Scholar 

  • Pinter RB (1977) Visual discrimination between small objects and large textured backgrounds. Nature (London) 270:429–431.

    Article  CAS  Google Scholar 

  • Poggio T, Reichardt W, Hausen K (1981 ) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68:443–446.

    Article  Google Scholar 

  • Reichardt W (1957) Autokorrelationsauswertung als Funktionsprinzip des Nervensystems. Z Naturforsch 12b:418–457.

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communication. John Wiley & Sons, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1973) Musterinduzierte Flugorientierung: Verhaltens-Versuche an der Fliege Musca domestica. Naturwissenschaften 60:122–138.

    Article  Google Scholar 

  • Reichardt W (1986) Processing of optical information by the visual system of the fly. Vision Res 26:113–126.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Computation of optical motion by movement detectors. Biophys Chem 26:263–278.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioral experiments with the fly Musca domestica). Biol Cybernet 53:285–306.

    Article  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol Cybernet 35:81–100.

    Article  Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybernet 46 (Suppl):1–30.

    Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: Parametric control over on-off pathways. Exp Brain Res 54:390–394.

    Article  PubMed  CAS  Google Scholar 

  • Rind C (1983) A directionally sensitive motion detecting neuron in the brain of a moth, J Exp Biol 102:253–271.

    Google Scholar 

  • Rowell CHF, O’Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185.

    Google Scholar 

  • Srinivasan MV (1977) A visually-evoked roll response in the housefly. Open-loop and closed-loop studies. J Comp Physiol A 119:1–14.

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Strausfeld NJ (1980) Male and female visual neurons in dipterous insects. Nature (London) 283:381–383.

    Article  Google Scholar 

  • Strausfeld NJ (1984) Functional neuroanatomy of the blowfly’s visual system. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York London, pp 483–522.

    Google Scholar 

  • Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of insects. In: Horn E (ed) Multimodal convergence in sensory systems. Fortschr Zool 28. Fischer, Stuttgart, pp 47–76.

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985a) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to leg and neck motor neuropil in Calliphora erythrocephala. Cell Tissue Res 240:617–640.

    Article  Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985b) The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica. Cell Tissue Res 242:531–550.

    Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere and prosternai inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615.

    Article  Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RN, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30:73–79.

    Article  Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythocephala. I. Muscles and motor neurons. J Comp Physiol A 160:205–224.

    Article  Google Scholar 

  • Virsik RP, Reichardt W (1976) Detection and tracking of moving objects by the fly Musca domestica. Biol Cybernet 23:83–98.

    Article  Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.), II. Pursuit of targets. Philos Trans R Soc London Ser B 312:553–579.

    Article  Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) III. Interactions between angular movement induced by wide-and smallfield stimuli. Philos Trans R Soc London Ser B 312:581–595.

    Article  Google Scholar 

  • Wehner R (1981) Spatial vision in insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616.

    Google Scholar 

  • Wehrhahn C (1978) The angular orientation of the movement detectors acting on the flight lift responses in flies. Biol Cybernet 31:169–173.

    Article  CAS  Google Scholar 

  • Wehrhahn C (1979) Sex-specific differences in the chasing behavior of houseflies (Musca). Biol Cybernet 32:239–241.

    Article  Google Scholar 

  • Wehrhahn C (1985) Visual guidance of flies during flight. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Nervous sytems: sensory, Pergamon, Oxford, pp 673–684.

    Google Scholar 

  • Wehrhahn C (1986) Motion sensitive yaw torque responses of the housefly Musca: A quantitative study. Biol Cybernet 55:275–280.

    Article  Google Scholar 

  • Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? A behavioral analysis based on short time stimulation. Biol Cybernet 38:179–186.

    Article  Google Scholar 

  • Wehrhahn C, Reichardt W (1975) Visually induced height orientation of the fly Musca domestica. Biol Cybernet 20:37–50.

    Article  Google Scholar 

  • Zaagman WH, Mastebroek HAK, Buyse T, Kuiper JW (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J Comp Physiol A 116:39–50.

    Article  Google Scholar 

  • Zanker JM (1987) Uber die Flugkrafterzeugung und Flugkraftsteuerung der Fruchtfliege Drosophila melanogaster. Diss, Eberhard-Karls-Univ, Tübingen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hausen, K., Egelhaaf, M. (1989). Neural Mechanisms of Visual Course Control in Insects. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics