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Abstract. When only a single image of a face is available, can we generate 
new images of the face across changes in viewpoint or illumination? The 
approach presented in this paper acquires its knowledge about possible image 
changes from other faces and transfers this prior knowledge to a novel face 
image. In previous work we introduced the concept of linear object classes 
(Vetter and Poggio, 1997; Vetter, 1997): In an image based approach, a 
flexible image model of faces was used to synthesize new images of a face 
when only a single 2D image of that face is available. 

In this paper we describe a new general flexible face model which is now 
"learned" from examples of individual 3D-face data (Cyberware-scans). In 
an analysis-by-synthesis loop the flexible 3D model is matched to the novel 
face image. Variation of the model parameters, similar to multidimensional 
morphing, allows for generating new images of the face where viewpoint, 
illumination or even the expression is changed. 

The key problem for generating a flexible face model is the computation of 
dense correspondence between all given example faces. A new correspondence 
algorithm is described, which is a generalization of existing algorithms for 
optic flow computation to 3D-face data. 

1 Introduction 

"Can you imagine?" 
"Yes, I see ...... " 
In human language mental imagery seems to be a natural ability. Imagery is 
often discussed as one of the basic forms of human cognition for the analysis 
of situations or scenes (Kosslyn, 1994). 

A similar concept is developed in machine intelligence for the problem of 
pattern analysis and image understanding. In order to separate or compen­
sate for the many factors that can change the image of an object, image 
models are built that allow the influence of each of these imaging factors to 
be simulated. So in computer vision imagery is directly translated into image 
synthesis and an image analysis is performed by matching an image model to 
a novel image, thereby parameterizing the novel image in terms of a known 
model. 
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Figure 1: A simple analysis by synthesis schema. To analyze an image if it 
represents a face, the face model generates a model image which is compared 
with the input image. After minimizing the matching error, the internal 
model parameters lead to the description of the input image. 

Analysis by synthesis 
The requirement of pattern synthesis for pattern analysis has often been 
proposed within a Bayesian framework (Grenander, 1978; Mumford, 1996) 
or has been formulated as an alignment technique (Ullman, 1989). This 
is in contrast to pure of bottom-up techniques which have been advocated 
especially for the early stages of visual signal processing (Marr, 1982). Here a 
standard strategy is to reduce a signal to a feature vector and to compare this 
vector with those expected for signals in various categories. A crucial problem 
of these algorithms is that they cannot explicitly describe variations between 
or within the categories and therefore have difficulty separating unexpected 
noise from the variations within a particular category. 

In contrast, the algorithm described in this paper works by actively re­
constructing the signal to be analyzed. In an additional top-down path an 
estimated signal is generated and compared to the present input signal. Then 
by comparing the real signal with its reconstruction it is decided if the anal­
ysis is sufficient to explain the signal or not. Clearly, such an approach has 
the additional problem of defining a model function to reconstruct the input 
signal. 

This paper focuses on the analysis and synthesis of images of a specific 
object class - that is on images of human faces. For object classes, such 
as faces or cars, where all objects share a common similarity, such a model 
function could be learned from examples. That is, the image model for the 
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whole object class is derived by exploiting some prototypical example images. 
Models developed for the analysis and synthesis of images of a specific class 

of objects must solve two problems simultaneously: 

• The model must be able to synthesize images that cover the whole range 
of possible images of the class. 

• It must be possible to match the model to a novel image. Formally, this 
leads to an optimization problem with all of the associated requirements 
that a global minimum can be found. 

In recent years, two-dimensional image-based face models have been con­
structed and applied for the synthesis of rigid and nonrigid face transfor­
mations (Choi et al., 1991; Beymer et al., 1993; Lanitis et al., 1995). These 
models exploit prior knowledge from example images of prototypical faces and 
work by building flexible image-based representations (active shape models) of 
known objects by a linear combination of labeled examples. These represen­
tations are applied for the task of image search and recognition or synthesis 
(Lanitis et al., 1995). The underlying coding of an image of a new object or 
face is based on linear combinations of the two-dimensional shape (warping 
fields) of examples of prototypical images as well as the linear combinations 
of their color values at corresponding locations (texture). 

For the problem of synthesizing novel views to a single example image of 
a face we developed over the last years the concept of linear object classes 
(Vetter and Poggio, 1997; Vetter, 1997). This image-based method allows 
us to compute novel views of a face from a single image. On the one hand, 
the method draws on a general flexible image model which can be learned 
automatically from examples images, and on the other hand, on an algorithm 
that allows for matching this flexible model to a novel face image. The novel 
image now can be described or coded through the internal model parameters 
which are necessary to reconstruct the image. The design of the model allows 
also for synthesizing new views of the face. 

In this paper we replace the two-dimensional image model by a three­
dimensional flexible face model. A flexible three-dimensional face model will 
lead on the one hand to a more efficient data representation and on the other 
hand to a better generalization to new illumination conditions. 

In all these techniques, it is crucial to establish the correspondence be­
tween each example face and single reference face, matching image points in 
the two-dimensional approach, and surface points in the three-dimensional 
case. Correspondence is a key step posing a difficult problem. However, for 
images of objects which share many common features, such as faces all seen 
from a single specific viewpoint, automated techniques seem feasible. The 
techniques applied in the past can be separated in two groups, one which 
establishes the correspondence for a small number of feature points only and 
into the techniques computing the correspondence for every pixel in an im­
age. For the first approach usually models of particular features like the eye 
corners or the whole chin line are developed off line and then matched to a 
new image (Lanitis et al., 1995; Herpers et al., 1996). The second technique 
computes the correspondence for each pixel in an image by comparing this 
image to a reference image using methods derived from optical flow com­
putation(Beymer et al., 1993; Beymer and Poggio, 1996). In this paper we 
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will extend this method of dense correspondence which we already applied 
successfully to face images (Vetter and Poggio, 1997; Vetter et al., 1997), to 
the three-dimensional face data. 

The paper is organized as follows. First, we describe the flexible three­
dimensional face model and compare it to the two-dimensional image models 
we used earlier. Second we describe an algorithm to compute dense corre­
spondence between individual 3D models of human faces. Third we describe 
an algorithm that allows to match the flexible face model to a novel image. 
Finally we show examples for synthesizing new images from a single image 
of a face and describe future improvements. 

2 Flexible 3D face models 
In this section we will give the formulation of a flexible three-dimensional 
face model which captures prior knowledge about faces exploiting the general 
similarity among faces. The model is a straight forward extension of the linear 
object class approach as described earlier(Vetter and Poggio, 1997; Vetter, 
1997). Prototypical examples of an object class like faces are linked to a 
general class model that captures the similarity and regularities specific for 
this object class. 
Three-dimensional models 
In computer graphics, presently the most realistic three-dimensional face rep­
resentations consist of a 3D mesh describing the geometry and a texture map 
capturing the color data of a face. These representations of individual faces 
are obtained either by three-dimensional scanning devices or through pho­
togrammetric techniques from several two-dimensional images of a specific 
face (Parke, 1974; Akimoto et al., 1993). The synthesis of new faces by in­
terpolation between such face representation was already demonstrated in 
the pioneering work of Parke (1974). Recently this idea of forming linear 
combinations of faces was used and extended to a general three-dimensional 
flexible face model for the analysis and synthesis of two-dimensional facial 
images (Choi et al., 1991; Poggio and Vetter, 1992; Vetter and Poggio, 1997). 

Shape model: The three-dimensional geometry of a face is represented by 
a shape-vector S = (X1 ,Y1 ,Zl,X2 , ...•. 'Yn'Zn)T E ~3n, that contains the 
X, Y, Z-coordinates of its n vertices. The central assumption for the forma­
tion of a flexible face model is that a set of M example faces Si is available. 
Additionally, it is assumed that all these example faces Si consist of the same 
number of n consistently labeled vertices, in other words all example faces 
are in full correspondence (see next section on correspondence). Usually this 
labeling is defined on an average face shape, which is obtained iteratively 
and which is often denoted as reference face STej. Additionally, <').11 faces are 
assumed to be aligned in an optimal way by rotating and translating them 
in three-dimensional space. Under this assumptions a new face geometry 
Smodel can be generated as a linear combination of A1 example shape-vectors 
Si each weighted by Ci 

M 

Smodel = L Ci Si . 

i=l 

(1) 
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The linear shape models derived in equation (1) allows for representing 
a new shape S as its approximation through the M example shapes Si : 
S ~ 'Lf'!1 Ci Si· In other words, the example shapes represent a shape 
basis onto which anew shape S is projected. The coefficients Ci of the 
projection then define a coding of the original shape vector in this vector 
space which is spanned by all examples. A common strategy for increasing 
the efficiency of such a coding schema is to reduce the statistical redundancy 
within the example space. Principal component analysis (PCA) also known 
as Karhunen-Loeve expansion, is the standard procedure to obtain an optimal 
reduction of the dimensionality in data (for more details see (Duda and Hart, 
1973)). While an optimization of the data representation is essential for any 
application, here, however, it will not be further discussed since it does not 
affect the basic idea of this paragraph which is the modeling of faces in a 
linear vector space. 
Texture model: The second component of a flexible three-dimensional face 
or head model is texture information, which is usually stored in a texture 
map. A texture map is simply a two-dimensional color pattern storing the 
brightness or color values, ideally only the albedo of the surface is stored. 
This pattern can be synthetically generated or can be a scanned image. 

A u, v coordinate system is introduced to associate the texture map with 
the modeled surface. The texture map is defined in the two-dimensional 
u, v coordinate system. For polygonal surfaces as defined through a shape 
vector S, each vertex has an assigned u, v texture coordinate. For points 
on the surface between vertices, the u, v coordinates are interpolated. For 
convenience we assume that the total number n of stored values in such a 
texture map is equal to the total number of vertices in a shape vector S. 

The linear texture model, described in (Choi et al., 1991), starts from a 
set of M example face textures Ti. Equivalent to the shape model described 
earlier it is assumed that all M textures Ti consist of the same number of n 
consistently labeled texture values that is all textures are in full correspon­
dence. For texture synthesis linear models are used again. A new texture 
Tmodel is generated as the weighted sum of M given example textures Ti as 
follows 

M 

Tmodel = L biTi, 

i=l 

(2) 

Equivalent to the linear expansion of shape vectors (equation 1) the lin­
ear expansion of textures can be understood and used as an efficient coding 
schema for textures. A new texture can be coded by its M projection coeffi­
cients bi in the 'texture vector space" spanned by M basis textures. Again, 
these basis textures can be just some prototypical example textures or can 
be derived from a large example set through an data optimization technique 
like PCA. 
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Cylindrical Coordinates 

3D Data -

Figure 2: Three-dimensional head data represented in cylindrical coordinates 
result in a data format which consists of two 2D-images. One image is the 
texture map (top right), and in the other image the geometry is coded (bottom 
r·ight). 

3 3D Correspondence with Optical Flow 
The key assumption of the flexible face model is the correspondence between 
all three-dimensional example data sets. That is, we have to find for every 
vertex location in one face data set, e.g. a vertex located on the nose, the 
corresponding vertex location on the nose in a reference face. This is in gen­
eral a hard problem. However, assuming that all face data sets are roughly 
aligned and they are not categorical different like having a beard or not, an 
automatic technique is feasible for computing the correspondence. The key 
idea of the work described in this paragraph is to modify an existing optical 
flow algorithm to match points on the surfaces of three-dimensional objects 
instead of points in 2D-images. While establishing correspondence between 
three-dimensional objects has only recently become an issue, matching cor­
respondent structures in two-dimensional images has been studied for many 
years. 
Optical Flow Algorithm 
In video sequences, in order to estimate the velocities of scene elements with 
respect to the camera it is necessary to compute the vector-field of optical 
flow, which expresses at each point PI = (Xl, yI) in the first image the dis­
placement (6x, 6y) = (X2-XI, Y2-yI) to the corresponding point P2 = (X2' Y2) 
in the following image. A variety of different optical flow algorithms have 
been designed to solve this problem (for a review see (Barron et al., 1994)). 
Unlike temporal sequences taken from one scene, a comparison of images of 
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completely different scenes or faces may violate a number of important as­
sumptions made in optical flow estimation. However, it was shown that some 
optical flow algorithms can still cope with this more difficult matching prob­
lem, opening up a wide range of applications in image analysis and synthesis 
(Beymer et al., 1993). 

For building flexible image models of faces (Vetter and Poggio, 1997) we 
used a coarse-to-fine gradient-based method (Bergen et al., 1992) applied to 
the Laplacians of the images and followed an implementation described in 
(Bergen and Hingorani, 1990). The Laplacian of the images were computed 
from the Gaussian pyramid adopting the algorithm proposed by (Burt and 
Adelson, 1983). For every point X,y in an image I(x,y), the algorithm at­
tempts to minimize the error term E = 2:(Ixc5x + Iyc5y - c5I)2 for c5x, c5y, 
with Ix, Iy being the spatial image derivatives of the Laplacians and c5I the 
difference of the Laplacians of the two compared images. The coarse-to-fine 
strategy starts with low resolution images and refines the computed displace­
ments when finer levels are processed. The final result of this computation 
(c5x, c5y) is used as an approximation of the spatial displacement of each pixel 
between two images. 
Three-dimensional face representations. 
The adaptation and extension of this optical flow algorithm to the three­
dimensional head data is straight forward due to the fact that the cylindrical 
representation of a head model is analogous to images (see figure 2). Instead 
of grey-level values in image coordinates X,y here we store the radius values 
and the color values for each angle ¢ and height h. A parameterization of 
a three-dimensional head in cylindrical coordinates results therefore in two 
'images', one representing the geometry of the head and the other containing 
the texture information. In order to compute the correspondence between 
different heads, both texture and geometry were considered simultaneously. 
The optical flow algorithm as described earlier had to be modified in the 
following way. Instead of comparing a scalar grey-level function I(x, y), our 
modification of the algorithm attempts to find the best fit for the vector 
function 

( 
radius(h, ¢) ) 

F(h ¢) = red(h, ¢) 
, green(h,¢) 

blue(h, ¢) 

in a norm II ( r~~i:s ) 112 
green 
blue 

= WI . radius2 + W2 . red2 + W3 . green2 + W4 . blue2 . 

The coefficients WI •.• W4 correct for the different energies [contrasts] in range 
and color values, and they assign roughly the same weight to shape as to all 
color channels taken together. 

For representing the geometry, radius values can be replaced by other sur­
face properties such as Gaussian curvature or surface normals. 

The system's output, at this stage, is a surface flow-field or correspondence 
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function 

( dh(h, ¢) ) 
C(h, ¢) = d¢(h, ¢) . (3) 

After computing the correspondence between all individual faces of the 
training set to the reference face, the Ti and Si of the flexible face model can 
be computed. 

4 Matching the flexible 3D model 
to a 2D image 

Based on an example set of faces which are already in correspondence, new 
3D shape vectors smodel and texture maps Tmodel can be generated by vary­
ing the coefficients Ci and bi in equations (1) and (2). Combining model shape 
and model texture results in a complete 3D face representation which now 
can be rendered to a new model image ImodeZ. This model image is not only 
a function of the model parameters Ci and bi, it also depends on some projec­
tion parameters Pj and on the surface reflectance properties and illumination 
parameters rj used for rendering. For the general matching problem of the 
model to a novel image Inovel we define the following error function 

E(c, b, p, r') = ~ L [rwvel (x, y) - Imodel (x, y)] 2 (4) 
x,y 

where the sum is over all pixels (x, y) in the images, I novel is the novel image 
being matched and rmodel is the current guess for the model image for a 
specific parameter setting (c,b,P,r'). Minimizing the error yields the model 
image which best fits the novel image with respect to the L2 norm. 

However, the optimization of the error function in equation (4) is extremely 
difficult for several reasons. First, the function is not linear in most of the pa­
rameters, second, the number of parameters is large (> 100) and additionally, 
the whole computation is extremely expensive since it requires the rendering 
of the three-dimensional face model to an image for each evaluation of the 
error function. 

In this paper we will simplify the problem by assuming the illumination 
parameters r and also the projection parameters p, such as view point, are 
known. This assumptions allows us to reduce the amount of rendering and 
also to use image modeling techniques developed earlier (Jones and Poggio, 
1996; Vetter et al., 1997). By rendering images from all example faces under 
fixed illumination and projection parameters, the flexible 3D model is trans­
formed into a flexible 2D face model. This allows us to generate, new model 
images all depicting faces in the requested spatial orientation and under the 
known illumination. After matching this flexible 2D model (see below) to 
the novel image the optimal model parameters are used within the flexible 
3D model to generate a three-dimensional face representation which best 
matches the novel target image. 
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4.1 Linear image model 

To built the flexible 2D model we first render all 3D example faces under the 
given projection and illumination parameters to images 10, [1, ... ,1M' Let 10 
be the reference image which defines the topology for the whole model, and 
positions within 10 are parameterized in (u, v). The 2D correspondence Sj 
between each pixel in the rendered reference image 10 and its corresponding 
location in each rendered example image Ii, can be directly computed as the 
projection P of the 3D shapes between all 3D faces and the reference face, 
as Sj = PSj - PSo with So == O. 

These pixelwise correspondences between 10 and each example image are 
mappings Sj : n2 -+ n2 which.map the points of 10 onto I j , i.e. Sj(u,v) = 
(x,y) where (x,y) is the point in I j which corresponds to (u,v) in 10 , We 
refer to Sj as a correspondence field and interchangeably as the 2D shape 
vector for the vectorized I j . Warping image I j onto the reference image 10 
we obtain tj as: . 

So, {tj} is the set of shape normalized prototype images, referred to as texture 
vectors. They are normalized in the sense that their shape is the same as the 
shape of the chosen reference image. 
The flexible image model is the set of images Imodel, parameterized by c = 

[co, C1,···, CM], b = lbo, b1 ,· .. , bM] such that 

M M 

I model 0 (L CiSi) = L bjtj. (5) 
i=O j=O 

The summation 2:t~o CiSi constrains the 2D shape of every model image to 
be a linear combination of the example 2D shapes. Similarly, the summa-
tion 2:!o bjtj constrains the texture of every model image to be a linear 
combination of the example textures. 

For any values for Ci and bi , a model image can be rendered by computing 
(x,y) = 2:~~oCiSi(U,V) and 9 = 2:!obj tj(u,v) for each (u,v) in the refer­
ence image. Then the (x, y) pixel is rendered by assigning Imodel (x, y) = g, 
that is by warping the texture into the model shape. 

4.2 Matching a 2D face model to an image 

For matching the flexible image model to a novel image we used the method 
described in (Jones and Poggio, 1996; Vetter et al., 1997). In 2D the error 
function as defined earlier in equation (4) is reduced to a function of the 
model parameters c and b. 

E(c,b) = ~ L [Inovel(x,y) - ImOdel(x,y)]2 
x,y 

In order to compute Imodel (see equation (5)) the shape transformation 
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expression 1 expression 2 

( smile = expression 2 - expression 1 ) 

original +1 smile +1.4 smile 

Figure 3: Correspondence between faces allows to map expression changes 
from one face to the other. The difference between the two expressions in the 
top row is mapped on the left face in the lower row multiplied by a factor of 
1 (center) or by 1.4 (lower right) 

(2::: CiSi) has to be inverted or one has to work in the coordinate system (u, v) 
of the reference image, which is computationally more efficient. Therefore, 
the shape transformation (given some estimated values for c and b) is applied 
to both jnovel and [model. From equation (5) we obtain 

M M 

E = ~ L[[novel 0 (LCiSi(U,V)) - Lbjtj(u,v)f 
u,v i=O j=O 

Minimizing the error yields the model image which best fits the novel image 
with respect to the L2 norm. The optimal model parameters c and b are found 
by a stochastic gradient descent algorithm (Viola, 1995), a method that is 
fast and has a low tendency to be caught in local minima. 

The robustness of the algorithm is further improved using a coarse-to-fine 
approach (Burt and Adelson, 1983). In addition to the textural pyramids, 
separate resolution pyramids are computed for displacement fields S in x and 
y. 
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Average Face Original Scan Caricature 

Figure 4: The comparison the 3D model of an individual face to the average 
face allows for exaggerating the characteristics of that face. After establishing 
correspondence between all example faces (200), the average face can be com­
puted. Here a caricature of the face was obtained by increasing the difference 
of its shape and of texture vectors to the average face by a factor of two. 

5 Novel view synthesis 

After matching the 2D image model to the novel image, the 2D model pa­
rameters c and b can be used in the three-dimensional flexible face model as 
defined in equations (1) and (2). The justification of this parameter transfer 
is discussed in detail under the aspect of linear object classes in (Vetter and 
Poggio, 1997). The output of the 3D flexible face model should be seen as 
an estimate of the three-dimensional shape from the two-dimensional image. 
Since this result is a complete 3D face model new images can be rendered 
from any viewpoint or under any illumination condition. 

5.1 Non rigid face transformations 

The correspondence between all faces within this flexible model allows for 
mapping non rigid face transitions 'learned' from one face onto all other 
faces in the model. 
Facial expressions: In figure 3 the transformation for a smile is extracted 
from one person and then mapped onto the face of a different person. By 
computing the correspondence between two examples of one persons face, one 
example showing the face smiling and the other showing the face in a neutral 
expression, this results in a correspondence field or deformation field which 
captures the spatial displacement for each vertex in the model according to 
the smile. This expression specific correspondence field is formal identical to 
the correspondence fields between different persons described earlier. Such 
a 'smile-vector' now can be added or subtracted from each face which is in 
correspondence to one of the originals, making a neutral looking face more 
smily or giving a smiling face a more emotionless expression. 

In the following, we will describe two procedures that evaluate the charac­
teristics of an individual face in respect to the other faces in the data base. 
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original 
~-------+--~--------~~~~~~ Male Shape 

, 
Figure 5: Varying the perceived sex of a face. An original face is modified 
with respect to its shape (horizontal) and its texture (vertical). A sex specific 
vector is added or subtracted to the 3D-model of that face. The vector is 
defined by the difference between the male and the female average face where 
each average is computed over 100 faces. 

Caricaturing: Automated algorithms to enhance the characteristics of an in­
dividual face in images are well known (Brennan, 1985; Benson and Perrett, 
1993). Typically, such algorithms operate as follows: First, a measure of the 
average value of a set of "features" across a large number of faces is computed. 
These features are defined, usually, as a set offaciallandmark locations (e.g., 
corners of the eye and other points that are reasonably easy to localize/match 
on all faces) in the two-dimensional image. Next, to create a caricature of 
an individual face, a measure of the deviation of the face from the average 
two-dimensional configuration is computed. Finally, "distinctive" or unusual 
features of the face are exaggerated to produce the caricature. This generic 
algorithm applied to images, easily transfers to three-dimensional head repre­
sentations (see also O'Toole et al., 1997) . Instead of using localized features 
we computed the average head shape by averaging over all shape vectors 
Si and computed the average texture over all texture vectors Ti. Now in­
dividual 3D-models of faces can be directly compared with this average at 
each vertex position. By increasing the difference (distance) to the average 
the characteristics of a face can be exaggerated, for example a relatively big 
nose, compared to the average, becomes even bigger and a small nose will 
shrink even more. In figure 4 a caricature of a face is shown, the caricature 
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is generated by doubling the distance of the original face to the average. 

A different question to ask is, how are male and female faces distributed in 
our flexible face model, are there simple parameters in the model that corre­
late with the sex of a face. Such a question can not be answered in advance, 
since the sex of faces did not influence our design of the flexible model. To 
answer this question we performed a simple classification experiment on our 
faces, which were represented through their shape and texture vectors. Sur­
prisingly, already a very simple linear classifier separated female and male 
faces to more than 90% correct. The classifier we used was a hyperplane in 
our model space, which was between the female and the male average and 
additionally perpendicular to the vector that is defined as the direction be­
tween the female and the male average. In other words, the projection of an 
individual face onto the vector, defined through the direction between the 
female and the male average, is already a good indicator for the sex of a face. 
Manipulating the sex of a face: The capability of our face model to synthesize 
new faces, can be used to modify the sex specific appearance of a face. The 
vector, defined by the direction between the male and female average, added 
or subtracted to an individual face, generates a new face which is more female 
or male. In figure 5 such a manipulation is shown. The original face of a 
female person is modified separately in its texture and shape components by 
adding or subtracting this sex specific vector. 

6 Data set 
We used a 3D data set obtained from 200 laser scanned (Cyberware™) 
heads of young adults (100 male and 100 female). 

The laser scans provide head structure data in a cylindrical representation, 
with radii of surface points sampled at 512 equally-spaced angles, and at 
512 equally spaced vertical distances. Additionally, the RGB-color values 
were recorded in the same spatial resolution and were stored in a texture 
map with 8 bit per channel. All faces were without makeup, accessories, 
and facial hair. After the head hair was removed digitally (but with manual 
editing), individual heads were represented by approximately 70000 vertices 
and the same number of color values. 
The data set of 200 human faces was split randomly in a test and in a training 
set (l00 faces each). The training set was used to built the flexible face model 
while the images to reconstruct were rendered from the test set . 
Images were rendered showing the faces 30° from frontal using mainly ambi­

ent light. The image size used in the experiments was 256-by-256 pixel and 
8 bit per color channel. 

7 Results 

The correspondence between all 3D example face models and a reference 
face modell was computed automatically. The results were correct (visual 
inspection) for almost all 200 faces, only in 7 cases obvious correspondence 
errors occurred. 
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2D INPUT IMAGE 

3D-RECONSTRUCTION 

NEW VIEWS 

Figure 6: Three-dimensional reconstruction of a face (center row) from a sin­
gle two-dimensional image of known orientation and illumination (top row). 
The prior knowledge about faces was given through a training set of three­
dimensional data of 100 faces different from the input face. The lower row 
shows new views generated by the flexible face model. From the, left to the 
right, the face is shown from a new view point, under a changed illumination 
and smiling. 
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Figure 6 shows an example of a three-dimensional face reconstruction from 
a single image. For the view synthesis we split our data set of 200 faces 
randomly into a training and a test set, each consisting of 100 faces. The 
training set was used to 'learn' a flexible model, where as test images of 
known orientation and illumination were rendered from the test set. After 
matching the model to the test image the model parameters were used to 
generate a complete three-dimensional face reconstuction. Presently, evalua­
tion of the three-dimensional face reconstructions from single images is only 
based on visual inspection. Out of 100 reconstructions, 43 faces were highly 
similar and often hard to distinguish from the original. In 29 cases the shape 
reconstructions were good but texture showed obvious deficiencies in color. 
For the remaining 28 faces the reconstructions showed no similarity to the 
original. Still, face shape was natural and in only one case not human like, 
while texture problems were more severe. Figure 6 shows an example of a 
three-dimensional face reconstruction from a single image. We rated this 
example as highly similar but within this category it is lower average. The 
figure shows, beside the reconstruction in the center row, images where the 
view point, the illumination or the facial expression is changed. 

8 Conclusions 

We presented a method for approximating the three-dimensional shape of 
a face from just a single image. In an analysis-by-synthesis loop a flexible 
3D-face model is matched to a novel image. The novel image now can be 
described or coded through the model parameters reconstructing the image. 
Prior knowledge on the three-dimensional appearance of faces derived from 
an example set of faces allows for predicting new images of a face. The results 
presented in this paper are preliminary. \Ve hope the color problem can be 
resolved by appropriate constraints in color space. We also plan to apply a 
more sophisticated evaluation of reconstruction quality based on ratings by 
naive human subjects and automated similarity measures. 

Clearly, the present implementation with its intermediate step of generating 
a complete 2D face model can not be the final solution. Next, we plan for 
each iteration step to form linear combinations in our 3D-representation first, 
render an image from this model and then perform the comparison to the 
target image. This requires several changes in our matching procedure to 
keep the computational costs tolerable. 

Also, the present approach is restricted to images of faces where projection 
parameters and illumination conditions are known. The extension of the 
method to face images taken under arbitrary conditions will need several 
improvements. One the one hand, adding more free parameters into the 
matching procedure will require more sophisticated model representations 
especially in terms of the statistical dependence of the parameters. On the 
other hand, the linear model depends on the given example set. In order to 
represent faces from a different race or a different age group, the model will 
need examples of these, an effect also well known in human perception (cf. 
e.g. (O'Toole et al., 1994)). 
A final judgment and comparison of the presented 3D-model approach with 
our 2D-image models presented earlier (Vetter and Poggio, 1997; Vetter, 
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1997) is currently difficult. At present, the two-dimensional linear object 
class approach seems to be more reliable in terms of its ability of match 
novel images. The number of wrong reconstuctions is less, however, for faces 
where the input image could be reconstructed, the 3D model showed a much 
better ability to generalize to new images. The implicit estimate of the surface 
normals in the image allowed for modifying the illumination conditions in the 
same image. 
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