Skip to main content

Flavoproteins of Known Three-Dimensional Structure

  • Conference paper
Biological Oxidations

Abstract

About 50 years ago FMN (Theorell 1935) and FAD (Warburg and Christian 1938) were discovered as prosthetic groups of the old yellow enzyme and of D-amino acid oxidase, respectively. More than 100 flavoenzymes have been described in the meantime (Dixon and Webb 1979); for four of them, structural data are known. These are glycolate oxidase (Lind quist and Bränden 1980), an FMN-dependent enzyme which probably has a chain fold in common with triose phosphate isomerase and one domain of pyruvate kinase, and three FAD-dependent enzymes: ferredoxin-NADP+ reductase (Sheriff and Herriott 1981; Karplus and Herriott 1982) p-hydroxybenzoate hydroxylase (Wierenga et al. 1979; Wierenga et al. 1982; Weijer et al. 1982) and glutathione reductase (Schulz et al. 1978; Thieme et al. 1981; Pai and Schulz 1983). The last mentioned two enzymes have been analyzed in atomic detail. In our presentation, we shall first describe glutathione reductase as a we11-understood flavoenzyme and then compare its structure with p-hydroxybenzoate hydroxylase. Whenever possible we shall include structural aspects of other flavoproteins in our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. New Engl J Med 298:659–668 and 721–725

    Article  PubMed  CAS  Google Scholar 

  • Babior GL, Rosin RE, McMurrich BJ, Peters WA, Babior BM (1981) Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil. J Clin Invest 67: 1724–1728

    Article  PubMed  CAS  Google Scholar 

  • Boggaram V, Larson K, Mannervik B (1978) Characterization of glutathione reductase from procine erythrocytes. Biochim Biophys Acta 527: 337–347

    PubMed  CAS  Google Scholar 

  • Brown NL, Ford SJ, Pridmore RD, Fritzinger DC (1983) DNA sequence of a gene from the Pseudomonas transposon TN501 encoding mercuric reductase. Biochemistry (in press)

    Google Scholar 

  • Browne WJ, North ACT, Phillips DC, Brew K, Vanaman TC, Hill RL (1969) A possible three-dimensional structure of bovine α-lactalbumin based on that of hen’s egg-white lysozyme. J Mol Biol 42: 65–86

    Article  PubMed  CAS  Google Scholar 

  • Burnett RM, Darling GD, Kendall DS, Le Quesne ME, Mayhew SG, Smith WW, Ludwig ML (1974) The structure of the oxidized form of clostridial flavodoxin at 1.9 A resolution. J Biol Chem 249: 4383–4392

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605

    PubMed  CAS  Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  • Eckman JR, Eaton JW (1979) Dependence of plasmodial glutathione metabolism on the host cell. Nature 278: 754–756

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC (1977) Biologically important thiol-disulfide reactions. Adv Exp Med Biol 86A: 1–30

    Google Scholar 

  • Fox BS, Walsh CT (1982) Mercuric reductase. J Biol Chem 257: 2498–2503

    PubMed  CAS  Google Scholar 

  • Fox BS, Walsh CT (1983) Active site peptide of mercuric reductase: Homology with glutathione reductase and lipoamide dehydrogenase. Biochemistry, in press

    Google Scholar 

  • Fritsch KG (1982) Zur Charakterisierung und Kristallisation des FAD-freien Apoenzyms der menschlichen Glutathionreduktase. Diplomarbeit, Freie Universität Berlin

    Google Scholar 

  • Fritsch KG, Pai EF, Schirmer RH, Schulz GE, Untucht-Grau R (1979) Structural and functional roles of FAD in human glutathione reductase. Hoppe-Seyler’s Z Physiol Chem 360: 261–262

    Google Scholar 

  • Garavito RM, Rossmann MG, Argos P, Eventoff W (1977) Convergence of active center geometries. Biochemistry 16: 5065–5071

    Article  PubMed  CAS  Google Scholar 

  • Glatzle D, Weber F, Wiss O (1968) Enzymatic test for the detection of riboflavin deficiency. NADPH-dependent glutathione reductase of red blood cells and its activation by FAD in vitro. Experientia 24: 1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Gutfreund H (1972) Enzymes: Physical Principles. New York, Wiley

    Google Scholar 

  • Hemmerich P (1976) Herz W, Grisebach H, Kirby GW (eds) In: Progress in the chemistry of organic natural products. Vol 33, Springer, Berlin Heidelberg New York, pp 451–527

    Google Scholar 

  • Hofsteenge J (1981) p-Hydroxybenzoate hydroxylase: Determination of the amine acid sequence and its integration with the crystal structure. PhD thesis, Groningen

    Google Scholar 

  • Hofsteenge J, Vereijken JM, Weijer WJ, Beinterna JJ, Wierenga RK, Drenth J (1980) Primary and tertiary structure studies of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Isolation and alignment of the CNBr peptides. Interactions of the protein with FAD. Eur J Biochem 113: 141–150

    Google Scholar 

  • Hol WGJ, van Duijnen PT, Berendsen HJC (1978) The α-helix dipole and the properties of proteins. Nature 273: 443–446

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1980) Pyridine nucleotide-disulfide oxidoreductases. Experientia (suppl) 36: 149–180

    CAS  Google Scholar 

  • Hultquist DE, Sannes LJ, Schafer DA (1981) The NADH/NADPH-methemoglobin reduction system of erythrocytes. In: Brewer GJ (ed) The red cell: Fifth Ann Arbor conference. Alan R Liss, New York, pp 291–305

    Google Scholar 

  • Jencks WP (1975) Binding energy, specificity and enzymic catalysis: The Circe effect. Adv Enzymol 43: 220–410

    Google Scholar 

  • Karplus PA, Herriott JR (1982) The structure of ferredoxin-NADP+ oxidoreductase: A progress report. In: Massey V and Williams CH Jr (eds) Flavins and flavoproteins. Elsevier, New York, pp 28–31

    Google Scholar 

  • Kosower EM (1966) The role of charge-transfer complexes in flavin chemistry and bio-chemistry. In: Slater EC (ed) Flavins and Flavoproteins. Elsevier, Amsterdam, pp 1–14

    Google Scholar 

  • Krauth-Siegel RL (1982) Untersuehungen zur Primärstruktur des Flavoenzyms Glutathionreduktase und zur Wechselwirkung mit seinen Liganden. PhD-thesis, Heidelberg

    Google Scholar 

  • Krauth-Siegel RL, Blatterspiel R, Saleh M, Schiltz E, Schirmer RH, Untucht-Grau R (1982) Glutathione reductase from human erythrocytes. The sequence of the NADPH domain and of the interface domain. Eur J Biochem 121: 259–267

    Google Scholar 

  • Krohne-Ehrich G, Schirmer RH, Untucht-Grau R (1977) Glutathione reductase from human erythrocytes. Isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem 80: 65–71

    Google Scholar 

  • Light DR, Walsh C, O’Callaghan, Goetzl EJ, Tauber AI (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH-oxidase of human polymorphonuclear leukocytes. Biochemistry 20: 1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist Y, Bränden CI (1980) Structure of glycolate oxidase from spinach at a re-solution of 5.5 Å. J Mol Biol 143: 201–211

    Article  PubMed  CAS  Google Scholar 

  • Loos H, Roos D, Weening R, Houwerzijl J (1976) Familial deficiency of glutathione reductase in human blood cells. Blood 48: 53–62

    PubMed  CAS  Google Scholar 

  • Ludwig ML, Pattridge KA, Smith WW, Jensen LH, Watenpaugh KD (1982) Comparisons of flavodoxin structures. In: Massey V and Williams CH Jr (eds) Flavins and flavo-proteins. Elsevier, New York, pp 19–27

    Google Scholar 

  • Marmervik B, Boggaram V, Carlberg I, Larson K (1980) The catalytic mechanism of glutathione reductase. In: Yagi K and Yamano T (eds) Flavins and Flavoproteins. Japan Scientific Societies, Tokyo, pp 173–187

    Google Scholar 

  • Massey V, Ghisla S (1974) Role of charge-transfer interactions in flavoprotein catalysis. Ann NY Acad Sei 227: 446–465

    Article  Google Scholar 

  • Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Transact 8: 246–257

    CAS  Google Scholar 

  • Massey V, Williams CH Jr (eds) (1982) Flavins and flavoproteins. Elsevier, New York Mayhew SG, Ludwig ML (1975) Flavodoxins and electron-transferring flavoproteins. In: Boyer PD (ed) The enzymes, Vol 12B. Academic, New York, pp 57–118

    Google Scholar 

  • Molski TFP, Naccache PH, Volpi M, Wolpert LM, Sha’afi RI (1980) Specific modulation of the intracellular pH Of rabbit neutrophils by chemotactic factors. Biochem Biophys Res Coram 94: 508–514

    Article  CAS  Google Scholar 

  • Müller F, van Berkel WJH, Drenth J, Wierenga RK, Kalk KH, Hofsteenge J, Vereijken JM, Branno M, Beintema JJ (1980) A multidisciplinary study on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens: Molecular properties, threedimensional structure and amino acid sequence. In: Yagi K and Yamano T (eds) Flavins and flavoproteins. Japan Scientific Societies, Tokyo, pp 413–422

    Google Scholar 

  • Ohlsson J, Nordström B, Bränden CI (1974) Structural and functional similarities within the coenzyme-binding domains of dehydrogenases. J Mol Biol 89: 339–354

    Article  PubMed  CAS  Google Scholar 

  • Oshino N, Imai Y, Sato R (1971) A function of cytochrome in fatty acid desaturation by rat liver microsomes. J Biochem (Tokyo) 69: 155–167

    CAS  Google Scholar 

  • Pai EF, Schulz GE (1983) The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J Biol Chem 258: 1752–1757

    PubMed  CAS  Google Scholar 

  • Pai EF, Sachsenheimer W, Schirmer RH, Schulz GE (1977) Substrate positions and induced-fit in crystalline adenylate kinase. J Mol Biol 114: 37–45

    Article  PubMed  CAS  Google Scholar 

  • Prentice AM, Bates CJ (1981) A biochemical evaluation of the erythrocyte glutathione reductase (EC 1.6.4.2) test for riboflavin status. Br J Nutr 45 (Nl): 37–65

    Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Prot Chem 23: 283–437

    Article  CAS  Google Scholar 

  • Rao ST, Rossmann MG (1973) Comparison of supersecondary structures in proteins. J Mol Biol 76: 241–256

    Article  PubMed  CAS  Google Scholar 

  • Ronchi S, Minchiotti L, Galliano M, Curti B, Swenson RP, Williams CH Jr, Massey V (1982) The primary structure of D-amino acid oxidase from pig kidney. J Biol Chem 257: 8824–8834

    PubMed  CAS  Google Scholar 

  • Rossmann MG, Liljas A, Bränden CI, Banaszak LJ (1975) Evolutionary and structural relationships among dehydrogenases. The Enzymes 11: 61–102

    Article  Google Scholar 

  • Schirmer RH, Schulz GE, Untucht-Grau R (1983) On the geometry of leucocyte NADPH-oxidase, a membrane flavoenzyme. Inferences from the structure of glutathione reductase. FEBS-Lett 154: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Schulz GE (1980) Gene duplication in glutathione reductase. J Mol Biol 138: 335–347

    Article  PubMed  CAS  Google Scholar 

  • Schulz GE, Schirmer RH (1979) Principles of Protein Structure. Springer, Berlin Heidelberg New York, 314 pages

    Book  Google Scholar 

  • Schulz GE, Zappe H, Worthington DJ, Rosemeyer MA (1975) Crystals of human erythrocyte glutathione reductase. FEBS Lett 54: 86–88

    Article  CAS  Google Scholar 

  • Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF (1978) The structure of the flavo-enzyme glutathione reductase. Nature 273: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Schulz GE, Schirmer RH, Pai EF (1982) FAD-binding site of glutathione reductase. J Mol Biol 160: 287–308

    Article  PubMed  CAS  Google Scholar 

  • Sheriff S, Herriott JR (1981) Structure of ferredoxin-NADP oxidoreductase and the location of the NADP-binding site. Results at 3.7 A resolution. J Mol Biol 145: 441–451

    Article  PubMed  CAS  Google Scholar 

  • Staal GEJ, Visser J, Veeger C (1969) Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185: 39–48

    PubMed  CAS  Google Scholar 

  • Tauber AI (1982) The human neutrophil oxygen armory. Trends Biochem Sci 7: 411–414

    Article  CAS  Google Scholar 

  • Theorell H (1935) Über die Wirkungsgruppe des gelben Ferments. Biochem Z 275: 37

    Google Scholar 

  • Thieme R, Pai EF, Schirmer RH, Schulz GE (1981) Three-dimensional structure of glutathione reductase at 2 A resolution. J Mol Biol 152: 763–782

    Article  PubMed  CAS  Google Scholar 

  • Untucht-Grau R (1983) Zur Primärstruktur der Glutathionreduktase: Die FAD-bindende Domäne und das C-terminale Bromcyanfragment: PhD thesis, Heidelberg

    Google Scholar 

  • Untucht-Grau R, Schirmer RH, Schirmer I, Krauth-Siegel RL (1981) Glutathione reductase from human erythrocytes. Amino-acid sequence of the structurally known FAD-binding domain. Eur J Biochem 120: 407–419

    Article  PubMed  CAS  Google Scholar 

  • Warburg O, Christian W (1938) Isolierung der prosthetischen Gruppe der d-Aminosäure-oxydase. Biochem Z 298: 150–168

    CAS  Google Scholar 

  • Warburg O, Christian W, Griese A (1935) Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem Z 282: 157–205

    CAS  Google Scholar 

  • Watenpaugh KD, Jensen LH, Legall J, Dubourdieu M (1972) Structure of the oxidized form of a flavodoxin at 2,5 A resolution: Resolution of the phase ambiguity by anomalous scattering. Proc Natl Acad Sci USA 69: 3185–3188

    Article  PubMed  CAS  Google Scholar 

  • Weijer WJ, Hofsteenge J, Vereijken JM, Jekel PA, Beintema JJ (1982) Primary structure of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Biochim Biophys Acta 704: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK, de Jong RJ, Kalk KH, Hol WGJ, Drenth J (1979) Crystal structure of p-hydroxybenzoate hydroxylase. J Mol Biol 131: 55–73

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK, Kalk KH, van der Laan JM, Drenth J, Hofsteenge J, Weijer WJ, Jekel PA, Beintema JJ, Müller F, van Berkel WJH (1982) The structure of p-hydroxybenzoate hydroxylase. In: Massey V and Williams CH Jr (eds) Flavins and flavoproteins. Elsevier, New York, pp 11–18

    Google Scholar 

  • Wierenga RK, Drenth J, Schulz GE (1983) Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD as well as the NADPH-binding domains of glutathione reductase. J Mol Biol 167: 725–739

    Article  PubMed  CAS  Google Scholar 

  • Williams CH Jr (1976) Flavin-containing dehydrogenases. In: Boyer PD (ed) The Enzymes, Vol 13, 3rd ed. Academic, New York, pp 89–173

    Google Scholar 

  • Williams CH Jr, Arscott LD, Schulz GE (1982) Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase. Proc Natl Acad Sci (USA) 79: 2199–2202

    Article  CAS  Google Scholar 

  • Worthington DJ, Rosemeyer MA (1974) Human glutathione reductase: Purification of the crystalline enzyme from erythrocytes. Eur J Biochem 48: 167–177

    Article  Google Scholar 

  • Young IG, Rogers BL, Campbell HD, Jaworowski A, Shaw DC (1981) Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur J Biochem 116: 165–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schirmer, R.H., Schulz, G.E. (1983). Flavoproteins of Known Three-Dimensional Structure. In: Sund, H., Ullrich, V. (eds) Biological Oxidations. Colloquium der Gesellschaft für Biologische Chemie 14.–16. April 1983 in Mosbach/Baden, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69467-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69467-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69469-1

  • Online ISBN: 978-3-642-69467-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics