Skip to main content

The Paleontological Significance of Trace Fossils

  • Chapter
The Study of Trace Fossils

Synopsis

Trace fossils grade imperceptibly into body fossils; indeed, in some cases the two are difficult to distinguish. Although in most instances the organism responsible for a given trace is impossible to identify, trace fossil studies still can add much to our knowledge of the fossil record. Trace fossils provide rudimentary evidence for the morphology of the tracemakers, but the greatest contribution by traces is their demonstration of behavior patterns among extinct organisms. Trilobites and their traces are an excellent example, especially concerning modes of feeding, locomotio and protection. The contribution of ichnology to the general field of evolution is also important as it pertains to phyletic rates within the Metazoa, particularly during late Precambrian time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abel, O. 1935. Vorzeitliche Lebensspuren. Jena, Gustav Fischer, 644 p.

    Google Scholar 

  • Allen, A. T. and J. G. Lester. 1953. Animal tracks in an Ordovician rock of northwest Georgia. Georgia Geol. Surv., Bull. 60:205–214.

    Google Scholar 

  • Banks, N. L. 1970. Trace fossils from the late Precambrian and Lower Cambrian of Finnmark, Norway. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:19–35.

    Google Scholar 

  • Barghoorn, E. 1971. The oldest fossils. Scientific Amer., 224:30–54.

    Article  Google Scholar 

  • Birkenmajer, K. and D. L. Bruton. 1971. Some trilobite resting and crawling traces. Lethaia, 4:303–319.

    Article  Google Scholar 

  • Bischoff, B. 1968. Zoophycosa polychaete annelid, Eocene of Greece. Jour. Paleont., 42: 1439–1443.

    Google Scholar 

  • Bradley, J. 1973. Zoophycos and Umbellula(Pennatulacea): their synthesis and identity. Palaeogeogr., Palaeoclimatol., Palaeoecol., 13:103–128.

    Article  Google Scholar 

  • Caster, K. E. 1938. A restudy of the tracks of Paramphibius. Jour. Paleont., 12:3–60.

    Google Scholar 

  • ———. 1940. Die sogenannten Wirbeltier-spuren und die Limulus-Fahrten der Solnhofener Plattenkalke. Palaont. Zeitschr., 22: 12–29.

    Google Scholar 

  • ———. 1944. Limuloid trails from the Upper Triassic (Chinle) of the Petrified Forest National Monument, Arizona. Amer. Jour. Sci., 242:74–84.

    Article  Google Scholar 

  • Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Jour. Paleont., 45:212–246.

    Google Scholar 

  • Cloud, P. E. 1968. Pre-Metazoa evolution and the origin of the Metazoa. In E. T. Drake(ed.), Evolution and environments. New Haven, Conn., Yale Univ. Press, p. 1–72.

    Google Scholar 

  • Crimes, T. P. 1970a. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from lower Palaeozoic strata. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:101–127.

    Google Scholar 

  • ———. 1970b. Trilobite tracks and other trace fossils from the Upper Cambrian of north Wales. Geol. Jour., 7:47–68.

    Article  Google Scholar 

  • Daily, B. 1972. The base of the Cambrian and the first Cambrian faunas. In J. B. Jones and B. Mowan (eds.), Stratigraphic problems of the later Precambrian and Early Cambrian. Univ. Adelaide, Centre Precamb. Res., Spec. Paper 1:13–42.

    Google Scholar 

  • Ewing, M. and R. A. Davis. 1967. Lebensspuren photographed on the ocean floor. In J. B. Hersey (ed.), Deep-sea photography. Johns Hopkins Oceanogr. Stud., 3:259–294.

    Google Scholar 

  • Fenton, C. L. 1937. Trilobite nests and feeding burrows. Amer. Midland Natur. 18:446–451.

    Article  Google Scholar 

  • ———. and M. A. Fenton. 1934. Scolithusas a fossil phoronid. Pan-American Geol., 61: 341–348.

    Google Scholar 

  • Frey, R. W. 1970. Trace fossils of the Fort Hays Limestone Member, Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleont. Contr., Art. 53, 41 p.

    Google Scholar 

  • ———. and T. V. Mayou. 1971. Decapod burrows in Holocene barrier beaches and washover fans, Georgia. Senckenbergiana Marit., 3:53–77.

    Google Scholar 

  • Gernant, R. E. 1972. The paleoenvironmental significance ofGyrolithes(Lebensspur). Jour. Paleont., 46:735–742.

    Google Scholar 

  • Glaessner, M. F. 1962. Pre-cambrian fossils. Biol. Review, 37:467–494.

    Google Scholar 

  • ———. 1965a. Biological events and the Pre-cambrian time scale. Canadian Jour. Earth Sci., 5:586–590.

    Google Scholar 

  • ———. 1965b. Pre-cambrian life-problems and perspectives. Geol. Soc. London, Proc., 1626:165–169.

    Google Scholar 

  • ———. 1969. Trace fossils from the Pre-cambrian and basal Cambrian. Lethaia, 2: 369–393.

    Article  Google Scholar 

  • Goldring, R. 1962. The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläont. Zeitschr., 36:232–251.

    Google Scholar 

  • ———. and A. Seilacher. 1971. Limulid under-tracks and their sedimentological implications. Neues Jahrb. Geol. Paläont., Abh., 137:422–442.

    Google Scholar 

  • Gray, J. 1968. Animal locomotion. Weidenfeld and Nicholson, 479 p.

    Google Scholar 

  • Häntzschel, W. 1952. Die LebensspurOphiomorphaLundgren im Miozän, ihre weltweite Verbreitung und Synonymie. Geol. Staatsinst. Hamburg, Mitt. 21:142–153.

    Google Scholar 

  • Harrington, H. J. 1959. General description of Trilobita. In R. C. Moore (ed.), Treatise on invertebrate paleontology, Pt. O, Arthropoda 1. Lawrence, Kan., Geol. Soc. Amer. and Univ. Kansas Press, p. 040–0117.

    Google Scholar 

  • Heezen, B. C. and C. D. Hollister. 1971. Face of the deep. New York, Oxford Univ. Press, 659 p.

    Google Scholar 

  • Hertweck, G. 1970. The animal community of a muddy environment and the development of biofacies as effected by the life cycle of the characteristic species. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:235–242.

    Google Scholar 

  • Hester, N. C. and W. A. Pryor. 1972. Bladeshaped crustacean burrows of Eocene age: a composite form ofOphiomorpha. Geol. Soc. America, Bull., 83:677–688.

    Article  Google Scholar 

  • Hofmann, H. J. 1971. Precambrian fossils, pseudofossils, and problematica in Canada. Geol. Surv. Canada, Bull. 189, 146 p.

    Google Scholar 

  • Howard, J. D. and C. A. Elders. 1970. Burrowing patterns of haustoriid amphipods from Sapelo Island, Georgia. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:243–263.

    Google Scholar 

  • Howell, B. F. 1957. New Cretaceous scoleciform annelid from Colorado. Palaeont. Soc. India, Jour., 2:149–152.

    Google Scholar 

  • ———. 1962. Worms. In R. C. Moore (ed.), Treatise on invertebrate paleontology, Pt.

    Google Scholar 

  • W, Miscellanea. Lawrence, Kan., Geol. Soc. America and Univ. Kansas Press, p. W144–W177.

    Google Scholar 

  • Każmierczak, J. and A. Pszczolkowski. 1969. Burrows of Enteropneusta in Muschelkalk (Middle Triassic) of Holy Cross Mountains, Poland. Acta Palaeont. Polonica, 14: 299–318.

    Google Scholar 

  • Keij, A. J. 1965. Miocene trace fossils from Borneo. Paläont. Zeitschr., 39:220–228.

    Google Scholar 

  • Kennedy, W. J. 1967. Burrows and surface traces from the Lower Chalk of southern England. British Mus. Nat. Hist. (Geol.), Bull., 15: 127–167.

    Google Scholar 

  • ———. and J. D. S. Maougall. 1969. Crustacean burrows in the Weald Clay (Lower Cretaceous) of southeastern England and their environmental significance. Palaeontology, 12:459–471.

    Google Scholar 

  • Kilpper, K. 1962. XenohelixMansfield 1927 aus der miozänen Niederrheinischen Braunkohlenformation. Paläont. Zeitschr., 36:55–58.

    Google Scholar 

  • King, A. F. 1965. Xiphosurid trails from the Upper Carboniferous of Bude, North Cornwall. Geol. Soc. London, Proc., 1626:162–165.

    Google Scholar 

  • Lessertisseur, J. 1956. Sur un Bilobite Nouveau du Gothlandien de L’Ennedi (Tchad, A.E.F.)Cruziana ancor. Soc. Géol. France, Bull., 6th Ser., 6:43–47.

    Google Scholar 

  • Loring, A. P. and K. K. Wang. 1971. Réévaluation of some Devonian lebensspuren. Geol. Soc. America, Bull., 82:1103–1106.

    Article  Google Scholar 

  • Martinsson, A. 1965. Aspects of a Middle Cambrian thanatotope on Öland. Geol. Foren, i Stockholm Förhand., 87:181–230.

    Article  Google Scholar 

  • Moussa, M. T. 1970. Nematode fossil trails from the Green River Formation (Eocene) in the Uinta Basin, Utah. Jour. Paleont., 44:304–307.

    Google Scholar 

  • Nathorst, A. G. 1881. Om spar af nagra evertebrerade djur M.M. och deras paleontologiska betydelse. (Mémoire sur quelques traces d’animaux sans vertèbres etc. et de leur protée paléontologique.) Kgl. Svenska Vetensk. Akad. Handl., 18: 104 p.

    Google Scholar 

  • ———. 1886. Nouvelles observations sur les traces nimaux et autres phénomènes d’origine purement mécanique décrits comme. “Algues fossiles.” Kgl. Svenska Vetensk. Akad. Handl, 21: 58 p.

    Google Scholar 

  • Nowak, W. 1959. Palaeodictyum in the FlyschCarpathians. Kwartaln. Geol., 3:103–125. (with English summary).

    Google Scholar 

  • Orłowski, S. et al. 1971. Ichnospecific variability of the Upper CambrianRusophycusfrom the Holy Cross Mountains. Acta Geol. Polonica, 21:341–348.

    Google Scholar 

  • Osgood, R. G., Jr. 1970. Trace fossils of the Cincinnati area. Palaeontographica Amer., 6(41): 281–444.

    Google Scholar 

  • ———. and E. Szmuc. 1972. The trace fossil Zoophycos as an indicator of water depth. Bulls. Amer. Paleont., 62(271): 1–22.

    Google Scholar 

  • Packard, A. S. 1900. On supposed merostomatous and other Paleozoic arthropod trails with notes on those ofLimulus. Amer. Acad. Arts Sci., Proc., 36:61–71.

    Google Scholar 

  • Plička, M. 1968. Zoophycos and a proposed classification of sabellid worms. Jour. Paleont., 42:836–849.

    Google Scholar 

  • ———. 1970. Zoophycosand similar fossils.In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3: 361–370.

    Google Scholar 

  • Radwański, A. and P. Roniewicz. 1967. Trace fossilAglaspidichnus sanctacrucensisn. gen., n.sp., a probable resting place of an aglaspid (Xiphosura). Acta Palaeont. Polonica, 12:545–554.

    Google Scholar 

  • Raup, D. M. and A. Seilacher. 1969. Fossil foraging behavior: computer simulation. Science, 166:994–996.

    Article  Google Scholar 

  • Raymond, P. E. 1920. The appendages, anatomy and relationships of trilobites. Connecticut Acad. Arts Sci., Mem. 7, 169 p.

    Google Scholar 

  • Richter, R. 1927. Die fossilen Fährten und Bauten der Würmer, ein Uberblick über ihre biologischen Grundformenund deren geologische Bedeutung. Paläont. Zeitschr., 9:193–240.

    Google Scholar 

  • Richter, R. 1928. Psychische Reaktionen fossiler Tiere. Palaeobiologica, 1:225–244.

    Google Scholar 

  • Schäfer, W. 1972. Ecology and palaeoecology of marine environments. Edinburgh and Chicago, Oliver & Boyd and Univ. Chicago Press, 568 p.

    Google Scholar 

  • Schmitt, W. L. 1965. Crustaceans. Ann Arbor, Mich., Univ. Michigan Press, 199 p.

    Google Scholar 

  • Seilacher, A. 1953. Uber die Methoden der Palichnologie. 1. Studien zur Palichnologie. Neues Jahrb. Geol. Paläont., Abh., 96:421–452.

    Google Scholar 

  • Seilacher, A. 1953. Uber die Methoden der Palichnologie. 2. Die fossilien Ruhespuren (Cubichnia). Neues Jahrb. Geol. Paläont. Abh., 98:87–124.

    Google Scholar 

  • Seilacher, A. 1954. Die geologische Bedeutung fossiler Lebensspuren. Zeitschr. Deutsche Geol. Gesellsch., 105:214–227.

    Google Scholar 

  • Seilacher, A. 1955. Spuren und Lebensweise der Trilobiten; Spuren und Fazies im Unterkambrium. In O. H. Schindewolf and A. Seilacher, Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akad. Wiss. u. Lit. Mainz, math.-naturw. Kl., Abh., 10:86–143.

    Google Scholar 

  • Seilacher, A. 1956. Der Beginn des Kambriums als biologische Wende. Neues Jahrb. Geol. Paläont., Abh., 103:155–180.

    Google Scholar 

  • Seilacher, A. 1959. Vom Leben der Trilobiten. Die Naturwissenschaften, 12:389–393.

    Article  Google Scholar 

  • Seilacher, A. 1960. Lebensspuren als Leitfossilien.Geol. Rundschau, 49:41–50.

    Article  Google Scholar 

  • Seilacher, A. 1962. Form und Funktion des Trilo-biten-Daktylus. Paläont. Zeitschr. (Hermann Schmidt Festband), 218–227.

    Google Scholar 

  • Seilacher, A. 1964. Biogenic sedimentary structures. In J. Imbrie and N. D. Newell (eds.), Approaches to paleoecology. New York, John Wiley, p. 296–316.

    Google Scholar 

  • Seilacher, A. 1967. Fossil behavior. Scientific Amer., 217:71–80.

    Article  Google Scholar 

  • Seilacher, A. 1970. Cruzianastratigraphy of “non-fossiliferous” Palaeozoic sandstones. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:447–477.

    Google Scholar 

  • Sharpe, C. F. S. 1932. Eurypterid trail from the Ordovician. Amer. Jour. Sci., Ser. 5, 24: 355–361.

    Article  Google Scholar 

  • Simpson, S. 1957. On the trace fossilChondrite s. Geol. Soc. London, Quart. Jour., 112:475–499.

    Article  Google Scholar 

  • Simpson, S. 1970. Notes onZoophycosandSpiro-phyton. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:505–514.

    Google Scholar 

  • Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geol. Soc. America, Mem. 125, 296 p.

    Google Scholar 

  • Størmer, L. 1934. Downtonian Merostomata from Spitsbergen, with remarks on the Suborder Synziphosura. Skrift. Norske Vidensk. Akad. Oslo, 2:1–26.

    Google Scholar 

  • Størmer, L. 1939. Studies on trilobite morphology, Part 1, The thoracic appendages and their phylogentic significance. Norsk Geol. Tidsskrift, 19:143–273.

    Google Scholar 

  • Størmer, L. 1951. Studies on trilobite morphology, Part 3, The ventral cephalic structures with remarks on the zoological position of the trilobites. Norsk Geol. Tidsskrift, 29:108–158.

    Google Scholar 

  • Wade, M. 1970. The stratigraphie distribution of the Ediacara fauna in Australia. Royal Soc. South Australia, Trans., 94:87–104.

    Google Scholar 

  • Willard, B. 1935. Chemung tracks and trails from Pennsylvania. Jour. Paleont., 9:43–56.

    Google Scholar 

  • Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia, 3:79–109.

    Article  Google Scholar 

  • Weimer, R. J. and J. H. Hoyt. 1964. Burrows ofCallianassa majorSay, geologic indicators of littoral and shallow neritic environments. Jour. Paleont., 38:761–767.

    Google Scholar 

  • Whittington, H. B. 1962. A natural history of trilobites. Smithsonian Inst., Publ. 4489: 405–415.

    Google Scholar 

  • Zittel, K. A. 1879–1890. Handbuch der Paläontologie. Munich, R. Oldenbourg, 958 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Osgood, R.G. (1975). The Paleontological Significance of Trace Fossils. In: Frey, R.W. (eds) The Study of Trace Fossils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65923-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65923-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65925-6

  • Online ISBN: 978-3-642-65923-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics