Skip to main content

From Finite Temperature Many-Body Perturbation Theory to Series Expansions and Monte Carlo Simulations

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XI

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 84))

  • 189 Accesses

Abstract

We discuss how finite temperature many-body perturbation theory can be used to develop high order series expansions and controlled Monte Carlo simulations for a variety of problems. Two approaches are outlined: (i) The cluster expansion method needed to develop convergent series expansions in some small parameter, and (ii) the power series expansion of the partition function that converges for finite lattices and forms the basis for the stochastic series expansion technique. The strengths of the two methods and their relationships with other numerical approaches for studying quantum many-body systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Gelfand, R. R. P. Singh and D. A. Huse, J. Stat. Phys. 59, 1093 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  2. H. X. He, C. J. Hamer and J. Oitmaa, J. Phys. A23, 1775 (1990).

    ADS  Google Scholar 

  3. M. P. Gelfand and R. R. P. Singh, review in preparation.

    Google Scholar 

  4. N. Elstner, Int. J. Mod. Phys. B 11, 1753 (1997).

    Article  ADS  Google Scholar 

  5. A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).

    Article  ADS  Google Scholar 

  6. A. W. Sandvik, J. Phys. A 25, 3667 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  7. N. V. Prokof ev, B. V. Svistunov, and I. S. Tupitsyn, cond-mat/9703200; Zh. Eks. Teor. Fiz. 64, 853 (1996).

    Google Scholar 

  8. A. W. Sandvik, R. R. P. Singh, and D. K. Campbell, Phys. Rev. B 56, 14510 (1997).

    Article  ADS  Google Scholar 

  9. N. Elstner and R. R. P. Singh, to appear in Physical Review B.

    Google Scholar 

  10. D. C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962); 60, 116 (1964).

    ADS  Google Scholar 

  11. D.H. Lee, J. D. Joannopoulos, and J. W. Negele, Phys. Rev. B 30, 1599 (1984); S. C. Chakravarty and D. B. Stein, Phys. Rev. Lett., 49, 582 (1982).

    Article  ADS  Google Scholar 

  12. A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).

    Article  ADS  Google Scholar 

  13. A. J. Millis and H. Monien, Phys. Rev. B50, 16606 (1994); H. Monien and T. M. Rice, Physica C, 1705 (1994).

    Article  Google Scholar 

  14. A. V. Chubukov, S. Sachdev and J. W. Ye, Phys. Rev. B 49, 11919 (1994).

    Article  ADS  Google Scholar 

  15. A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994); A. W. Sandvik, A. V. Chubukov, and S. Sachdev, Phys. Rev. B 51, 16483 (1995).

    Article  ADS  Google Scholar 

  16. J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).

    Article  ADS  Google Scholar 

  17. K. Hida, J. Phys. Soc. Jpn 61, 1013 (1992); M. P. Gelfand, Phys. Rev. B 53, 11309 (1996); W. H. Zheng Phys. Rev. B55, 12267 (1997).

    Article  ADS  Google Scholar 

  18. A. W. Sandvik (to be published).

    Google Scholar 

  19. A. F. Barabanov and E. V. Zhasinas, Phys. Lett. A 193, 191 (1994); R.-J. Liu and T.-L. Chen, Phys. Lett. A 194, 137 (1994); A. Fladderjohann, K.-H. Mütter, and P. Wielath, Z. Phys. B 100, 277 (1996).

    Google Scholar 

  20. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  21. S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett. 73, 332 (1994).

    Article  ADS  Google Scholar 

  22. R. N. Silver and H. Roder, Phys. Rev. E 56, 4822 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elstner, N., Sandvik, A.W., Singh, R.R.P. (1999). From Finite Temperature Many-Body Perturbation Theory to Series Expansions and Monte Carlo Simulations. In: Landau, D.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XI. Springer Proceedings in Physics, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60095-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60095-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64255-5

  • Online ISBN: 978-3-642-60095-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics