Skip to main content

Complex Analysis in the Future Tube

  • Chapter
Book cover Several Complex Variables II

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 8))

Abstract

The future tube in ℂn +1 is the unbounded domain τ+ = z = (z o,...,z n ) ∈ ℂn +1 : (Im z o)2 > (Imz 1)2 +...+ (Im z n )2 Im z o > 0. In other words, τ+ is a tube domain over the future cone V + = y ∈ ℝn +1 : y 2 0 > y 2 1 +...+ y 2 n , y 0 > 0. The domain τ+ is biholomorphically equivalent to a classical Cartan domain of the IVth type, hence to a bounded symmetric domain in ℂn +1. The future tube τ+ in ℂ4 (n = 3) is important in mathematical physics, especially in axiomatic quantum field theory, being the natural domain of definition of holomorphic relativistic fields. These specific features of the future tube motivated its investigation by mathematicians and physicists. Beginning with Elie Cartan’s classification of bounded symmetric domains, these domains were examined in many papers where the complex structure of their boundaries, integral representations, boundary values of holomorphic functions and so on were considered. The proof of the “edge-of-the-wedge” theorem by N.N. Bogolubov generated the rapid development of applications of the theory of several complex variables to axiomatic quantum field theory. During this period the “C-convex hull” and “finite covariance” theorems were proved, the Jost-Lehmann-Dyson representation was found et cetera. Recently R. Penrose has proposed a transformation connecting holomorphic solutions of the basic equations of field theory with analytic sheaf cohomologies of domains in ℝℙ3. These two directions developed, to a large extent, independently from each other, and some important results obtained in axiomatic quantum field theory still remain unknown to specialists in several complex variables and differential geometry. One of the goals of this paper is to give a unified presentation of advances in complex analysis in the future tube and related domains achieved in both of these directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenberg, L.A., Dautov, Sh.A. (1976): Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and plurisubharmonic functions on the Shilov boundary. Mat. Sb., Nov. Ser. 99, No. 3, 342–355. Engl. transl.: Math. USSR, Sb. 28, 301-313 (1978), Zbl.341.32002.

    MathSciNet  Google Scholar 

  • Aizenberg, L.A., Yuzhakov, A.P. (1979): Integral Representations and Residues in Multidimensional Complex Analysis. Novosibirsk: Nauka. 335 pp. Engl. transl.: transl. Math. Monogr. Vol. 58, Providence, 283 pp. (1983), Zbl.445.32002.

    Google Scholar 

  • Aleksandrov, A.B. (1983): On the boundary values of functions holomorphic in the ball. Dokl. Akad. Nauk SSSR 271, No. 4, 777–779. Engl. transl.: Sov. Math., Dokl. 28, 134-137 (1983), Zbl.543.32002.

    MathSciNet  Google Scholar 

  • Aleksandrov, A.B. (1984): Inner functions on compact spaces. Funkts. Anal. Prilozh. 18, No. 2, 1–13. Engl. transl.: Funct. Anal. Appl. 18, 87-98 (1984), Zbl.574.32006.

    Google Scholar 

  • Araki, H. (1963): A generalization of Borchers’ theorem. Helv. Phys. Acta 36, No. 1, 132–139, Zbl. 112, 432.

    MathSciNet  MATH  Google Scholar 

  • Atiyah, M.F. (1979): Geometry of Yang-Mills Fields. Pisa: Scuola Normale Superiore. 99 pp., Zbl.435.58001.

    MATH  Google Scholar 

  • Bekolle, D. (1984): Le dual de l’espace des fonctions holomorphes intégrables dans des domaines de Siegel. Ann. Inst. Fourier 34, No. 3, 125–154, Zbl.513.32032.

    Article  MathSciNet  MATH  Google Scholar 

  • Bell, S. (1982): Proper holomorphic mappings between circular domains. Comment. Math. Helv. 57, No. 3, 532–538, Zbl.511.32013.

    Article  MathSciNet  MATH  Google Scholar 

  • Bell, S. (1985): Proper holomorphic correspondences between circular domains. Math. Ann. 270 No. 3, 393–400, Zbl.554.32019.

    Article  MathSciNet  MATH  Google Scholar 

  • Berline, N., Vergne, M. (1981): Equations de Hua et noyau de Poisson. Lect. Notes Math. 880, Berlin, Heidelberg, New York: Springer-Verlag, 1–51, Zbl.521.32024.

    Google Scholar 

  • Beurling, A. (1972): Analytic continuation across a linear boundary. Acta Math. 128, No. 3, 153–182, Zbl.235.30003.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochner, S. (1944): Group invariance of Cauchy’s formula in several variables. Ann. Math., II, Ser. 45, No. 4, 686–707, Zbl.60, 243.

    Article  MathSciNet  MATH  Google Scholar 

  • Bogolubov, N.N., Vladimirov, V.S. (1958): A theorem on analytic continuation of generalized functions. Nauchn. Dokl. Vyssh. Shkoly, Fiz.-Mat. Nauki 1958, No. 3, 26–35 (Russian), Zbl.116, 85.

    Google Scholar 

  • Bogolubov, N.N., Vladimirov, V.S. (1971): Representation of n-point functions. Tr. Mat. Inst. Steklova 112, 5–21. Engl. transl.: Proc Steklov Inst. Math. 112, 1-18 (1973), Zbl.254.32015.

    Google Scholar 

  • Bogolubov, N.N., Medvedev, B.V., Polyvanov, M.K. (1958): Problems of the Theory of Dispersion Relations. Moscow: Fizmatgiz. 203 pp. (Russian), Zbl.83, 435.

    Google Scholar 

  • Bony, J.M. (1976): Propagation des singularités différentiables pour une classe d’opérateurs différentiels à coefficients analytiques. Astérisque, 34-35, 43–91, Zbl.344.35075.

    MathSciNet  Google Scholar 

  • Borchers, H.J. (1961): Über die Vollständigkeit lorentzinvarianter Felder in einer zeitartigen Röhre. Nuovo Cimento 19, No. 4, 787–793, Zbl.111, 432.

    Article  MathSciNet  MATH  Google Scholar 

  • Bros, J. (1977): Analytic completion and decomposability properties in tuboid domains. Publ. Res. Inst. Math. Sci. 12, Suppl., 19–37, Zbl.372.32002.

    Article  MathSciNet  MATH  Google Scholar 

  • Bros, J., Epstein, H., Glaser, V. (1967): On the connection between analyticity and Lorentz covariance of Wightman functions. Commun. Math. Phys. 6, No. 1, 77–100, Zbl. 155, 323.

    Article  MathSciNet  MATH  Google Scholar 

  • Bros, J., Iagolnitzer, D. (1975): Tuboides et structure analytique des distributions. Sémin. Goulaouic-Lions-Schwartz, 1974-1975, Exposé 16, 19 pp., Zbl.333.46028.

    Google Scholar 

  • Bros, J., Iagolnitzer, D. (1976): Tuboides dans ℂn et géneralisation d’un théorème de Cartan et Grauert. Ann. Inst. Fourier 26, No. 3, 49–72, Zbl.336.32003.

    Article  MathSciNet  MATH  Google Scholar 

  • Bros, J., Itzykson, C., Pham, F. (1966): Représentations intégrales de fonctions analytiques et formule de Jost-Lehmann-Dyson. Ann. Inst. Henri Poincaré, New. Ser., Sect. A5, No. 1, 1–35, Zbl. 163, 225.

    MathSciNet  Google Scholar 

  • Bros, J., Messiah, A., Stora, R. (1961): A problem of analytic completion related to the Jost-Lehmann-Dyson formula. J. Math. Phys. 2, No. 4, 639–651, Zbl. 131, 441.

    Article  MathSciNet  MATH  Google Scholar 

  • Burns, D., Stout, E.L. (1976): Extending functions from submanifolds of the boundary. Duke Math. J. 43, No. 5, 391–404, Zbl.328.32013.

    Article  MathSciNet  MATH  Google Scholar 

  • Cartan, E. (1935): Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Semin. Univ. Hamb. 11, No. 1–2, 116–162, Zbl.11, 123.

    Article  MATH  Google Scholar 

  • Chern, S.S. (1956): Complex Manifolds. Chicago: Univ. of Chicago, 181 pp., Zbl.88, 378.

    Google Scholar 

  • Chirka, E.M. (1973): Theorems of Lindelöf and Fatou in ℂn. Mat. Sb., Nov. Ser. 92, No. 4, 622–644. Engl. transl.: Math. USSR, Sb. 21, 619-639 (1975), Zbl.297.32001.

    Google Scholar 

  • Chirka, E.M., Khenkin, G.M. (1975): Boundary properties of holomorphic functions of several complex variables. Itogi Nauki Tekh., Ser. Sovrem. Probl. Math. 4, 13–142. Engl. transl.: J. Sov. Math. 5, 612-687 (1976), Zbl.375.32005.

    Google Scholar 

  • Dadok, J., Yang, P. (1985): Automorphisms of tube domains and spherical hypersurfaces. Am. J. Math. 107, No. 4, 999–1013, Zbl.586.32035.

    Article  MathSciNet  MATH  Google Scholar 

  • Danilov, L.I. (1985): On regularity of proper cones in R n. Sib. Math. Zh. 26, No. 2, 198–201, Zbl.581.32002.

    Article  MathSciNet  MATH  Google Scholar 

  • Drozhzhinov, Yu.N. (1982): Multidimensional Tauberian theorems for holomorphic functions of a bounded argument and quasiasymptotics of passive systems. Mat. Sb., Nov. Ser. 117, No. 1, 44–59. Engl. transl.: Math. USSR, Sb. 45, 45-61 (1983), Zbl.497.32001.

    MathSciNet  Google Scholar 

  • Drozhzhinov, Yu.N., Vladimirov, V.S., Zavialov, B.I. (1984): Tauberian type theorems for generalized functions. Tr. Math. Inst. Steklova 163, 42–48. Engl. transl.: Proc. Steklov Inst. Math. 163, 53-60 (1985), Zbl.568.46032.

    MATH  Google Scholar 

  • Drozhzhinov, Yu.N., Zavialov, B.I. (1979): Tauberian theorems for generalized functions supported in cones. Mat. Sb., Nov. Ser. 108, No. 1, 78–90. Engl. transl.: Math. USSR, Sb. 36, 75-86 (1980), Zbl.405.46033.

    Google Scholar 

  • Drozhzhinov, Yu.N., Zavialov, B.I. (1982): On a multidimensional analog of Lindelöf’s theorem. Dokl. Akad. Nauk SSSR 262, No. 2, 269–270 (Russian).

    MathSciNet  Google Scholar 

  • Drozhzhinov, Yu.N., Zavialov, B.I. (1985): Multidimensional Tauberian comparison theorems for generalized functions in cones. Mat. Sb., Nov. Ser. 126, No. 4, 515–542. Engl. transl.: Math. USSR, Sb. 54, 499-524 (1986), Zbl.585.46033.

    Google Scholar 

  • Dyson, F.J., (1958): Integral representations of causal commutators. Phys. Rev., II. Ser. 110, No. 6, 1460–1464, Zbl.85, 434.

    MathSciNet  MATH  Google Scholar 

  • Fefferman, C. (1970): Inequalities for strongly singular convolution operators. Acta Math. 124, No. 1–2, 9–36, Zbl. 188, 426.

    Article  MathSciNet  MATH  Google Scholar 

  • Freeman, M. (1977): Real submanifolds with degenerate Levi form. Proc. Symp. Pure Math. 30, part 1, 141–147, Zbl.354.53010.

    MathSciNet  Google Scholar 

  • Freeman, M. (1977): Local biholomorphic straightening of real submanifolds. Ann. Math., II. Ser. 106, No. 2, 319–352, Zbl.372.32005.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuks, B.A. (1963): Special Topics from the Theory of Analytic Functions of Several Complex Variables. Moscow: Fizmatgiz. 427 pp. English transl.: transl. Math. Monogr., Vol. 14, Providence (1965), Zbl. 146, 308.

    Google Scholar 

  • Furstenberg, H. (1963): A Poisson formula for semi-simple Lie groups. Ann. Math., II. Ser. 77, No. 2, 335–386, Zbl. 192, 127.

    Article  MathSciNet  MATH  Google Scholar 

  • Gindikin, S.G. (1964): Analysis on homogeneous domains. Usp. Mat. Nauk 19, No. 4, 3–92. Engl. transl.: Russ. Math. Surv. 19, No. 4, 1-89 (1964), Zbl.144, 81.

    MathSciNet  MATH  Google Scholar 

  • Hahn, K.T. (1972): Properties of holomorphic functions of bounded characteristic on star-shaped circular domains. J. Reine Angew. Math. 254, 33–40, Zbl.246.32002.

    MathSciNet  MATH  Google Scholar 

  • Heinzner, P., Sergeev, A.G. (1991): The extended matrix disk is a domain of holomorphy. Izv. Akad. Nauk SSSR, Ser. Mat. 55, No. 3, 647–657. Engl. transl.: Math. USSR, Izv. 38, 637-645 (1992).

    MathSciNet  MATH  Google Scholar 

  • Helgason, S. (1978): Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic Press, 628 pp., Zbl.451.53038.

    MATH  Google Scholar 

  • Hill, C.D., Kazlow, M. (1977): Function theory on tube manifolds. Proc. Symp. Pure Math. 30, part 1, 153–156, Zbl.383.32002.

    MathSciNet  Google Scholar 

  • Hörmander, L. (1971): Fourier integral operators, I. Acta Math. 127, 79–183, Zbl.212, 466.

    Article  MathSciNet  MATH  Google Scholar 

  • Hua, L.-K. (1958): Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Peking: Science Press. Engl. transl.: Providence: Am. Math. Soc. 1979.186 pp., Zbl.90, 96.

    Google Scholar 

  • Hua, L.-K., Look, K.H. (1983): Theory of harmonic functions in classical domains. Hua L.K., Selected Papers. Berlin, Heidelberg, New York: Springer-Verlag, 743–806, Zbl.518.01022.

    Google Scholar 

  • Johnson, K.D. (1978): Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane. Ark. Mat. 16, No. 1, 95–108, Zbl.395.22013.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, K.D. (1984a): Generalized Hua-operators and parabolic subgroups. The cases of SL(n, ℂ) and SL(n, ∝). Trans. Am. Math. Soc. 281, No. 1, 417–429, Zbl.531.22010.

    MATH  Google Scholar 

  • Johnson, K.D. (1984b): Generalized Hua-operators and parabolic subgroups. Ann. Math., II. Ser. 120, No. 3, 477–496, Zbl.576.22016.

    Article  MATH  Google Scholar 

  • Johnson, K.D., KoraĔyi, A. (1980): The Hua operators on bounded symmetric domains of tube type. Ann. Math., II. Ser. 111, No. 3, 589–608, Zbl.468.32007.

    Article  MATH  Google Scholar 

  • Jöricke, B. (1982): The two constants theorem for functions of several complex variables. Math. Nachr. 107, 17–52 (Russian), Zbl.526.32003.

    Article  MathSciNet  MATH  Google Scholar 

  • Jöricke, B. (1983): Continuity of the Cauchy projection in Hölder norms for classical domains. Math. Nachr. 112, 227–244 (Russian), Zbl.579.32006.

    Article  MathSciNet  MATH  Google Scholar 

  • Jost, R., Lehmann, H. (1957): Integral Darstellung kausaler Kommutatoren. Nuovo Cimento, X. Ser. 5, No. 7, 1598–1610, Zbl.77, 424.

    Article  MathSciNet  MATH  Google Scholar 

  • Kataoka, K. (1981): On the theory of Radon transformations of hyperfunctions. J. Fac. Sci., Univ. Tokyo, Sect. 1A 28, No. 2, 331–413, Zbl.576.32008.

    MathSciNet  MATH  Google Scholar 

  • Khenkin, G.M., Henkin, G.M., Leiterer, J. (1984): Theory of Functions on Complex Manifolds. Berlin: Akademie-Verlag, 226 pp., Zbl.573.32001.

    Google Scholar 

  • Khenkin, G.M., Henkin, G.M., Sergeev, A.G. (1980): Uniform estimates of solutions of the ∂-equation in pseudoconvex polyhedra. Mat. Sb., Nov. Ser. 112, No. 4, 522–567. Engl. transl.: Math. USSR, Sb. 40, 469-507 (1981), Zbl.452.32012.

    MathSciNet  Google Scholar 

  • Khenkin, G.M., Henkin, G.M., Tumanov, A.E. (1976): Interpolation submanifolds of pseudoconvex manifolds, Math. Program. Rel. Probi., Cent. Ehkon. Mat. Inst. Akad. Nauk SSSR, Mosk. 1974, 74–86. Engl. transl.: transl., II. Ser., Am. Math. Soc. 115, 59-69 (1980), Zbl.455.32009.

    Google Scholar 

  • Khenkin, G.M., Henkin, G.M., Tumanov, A.E. (1983): Local characterization of holomorphic automorphisms of Siegel domains. Funkts. Anal. Prilozh. 17, No. 4, 49–61. Engl. transl.: Funct. Anal. Appl. 17, 285-294 (1983), Zbl.572.32018.

    MathSciNet  Google Scholar 

  • Khurumov, Yu.V. (1983): Lindelöf’s theorem in ℂn. Dokl. Akad. Nauk SSSR 273, No. 6, 1325–1328. Engl. transl.: Sov. Math. Dokl. 28, 806-809 (1983), Zbl.567.32002.

    MathSciNet  Google Scholar 

  • Knapp, A.V., Williamson, R.E. (1971): Poisson integrals and semisimple groups. J. Anal. Math. 24, 53–76, Zbl.247.31002.

    Article  MathSciNet  MATH  Google Scholar 

  • Koecher, M. (1957): Positivitätsbereiche im ∝n. Am. J. Math. 79, No. 3, 575–596, Zbl.78, 12.

    Article  MathSciNet  MATH  Google Scholar 

  • Komatsu, H. (1972): A local version of Bochner’s tube theorem. J. Fac. Sci., Univ. Tokyo, Sect. IA 19, No. 2, 201–214, Zbl.239.32012.

    MathSciNet  MATH  Google Scholar 

  • KoraĔyi, A. (1965): The Poisson integral for generalized half-planes and bounded symmetric domains. Ann. Math., II. Ser. 82, No. 2, 332–350, Zbl.138, 66.

    Article  Google Scholar 

  • KoraĔyi, A. (1969): Boundary behavior of Poisson integrals on symmetric spaces. Trans. Am. Math. Soc. 140, 393–409, Zbl.179, 151.

    Google Scholar 

  • KoraĔyi, A. (1972): Harmonic functions on symmetric spaces. Symmetric Spaces. Pure Appl. Math. 8, 379–412, Zbl.291.43016.

    Google Scholar 

  • KoraĔyi, A. (1976): Poisson integrals and boundary components of symmetric spaces. Invent. Math. 34, No. 1, 19–35, Zbl.328.22017.

    Article  MathSciNet  Google Scholar 

  • KoraĔyi, A. (1979): Compactifications of symmetric spaces and harmonic functions. Lect. Notes Math. 739, Berlin, Heidelberg, New York: Springer-Verlag, 341–366, Zbl.425.43014.

    Google Scholar 

  • KoraĔyi, A., Malliavin, P. (1975): Poisson formula and compound diffusion associated to an over-determined elliptic system on the Siegel half-plane of rank two. Acta Math. 134, No. 1–2, 185–209, Zbl.318.60066.

    Article  MathSciNet  Google Scholar 

  • KoraĔyi, A., Pukanszky, L. (1963): Holomorphic functions with positive real part on polycylinders. Trans. Am. Math. Soc. 108, 449–456, Zbl. 136, 71.

    Article  Google Scholar 

  • KoraĔyi, A., Vagi, S. (1976): Isometries of H p spaces of bounded symmetric domains. Can. J. Math. 28, No. 2, 334–340, Zbl.344.32025.

    Article  Google Scholar 

  • KoraĔyi, A., Vagi, S. (1979): Rational inner functions on bounded symmetric domains. Trans. Am. Math. Soc. 254, 179–193, Zbl.439.32006.

    Google Scholar 

  • KoraĔyi, A., Wolf, J.A. (1965): Realisation of hermitian symmetric spaces as generalized half-planes. Ann. Math., II. Ser. 81, No. 2, 265–288, Zbl.137, 274.

    Article  Google Scholar 

  • Labonde, J.-M. (1985): Ensembles pics pour A(U n). C.R. Acad. Sci., Paris, Sér. I 301, No. 13, 671–673, Zbl.584.32031.

    MathSciNet  MATH  Google Scholar 

  • Lassalle, M. (1984a): Les équations de Hua d’un domaine borné symétrique du type tube. Invent. Math. 77, No. 1, 129–161, Zbl.582.32042.

    Article  MathSciNet  MATH  Google Scholar 

  • Lassalle, M. (1984b): Sur la valeur au bord du noyau de Poisson d’un domaine borné symétrique. Math. Ann. 268, No. 4, 417–423, Zbl.579.32052.

    Article  MathSciNet  MATH  Google Scholar 

  • Leray, J. (1959): Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III). Bull. Soc. Math. Fr. 87, 81–180, Zbl.199, 412.

    MathSciNet  MATH  Google Scholar 

  • Lindahl, L.-A. (1972): Fatou’s theorem for symmetric spaces. Ark. Mat. 10, No. 1, 33–47, Zbl.246.22010.

    Article  MathSciNet  MATH  Google Scholar 

  • Löw, E. (1984): Inner functions and boundary values in H (Ω) and A(Ω) in smoothly bounded pseudoconvex domains. Math. Z. 185, No. 2, 191–210, Zbl.508.32005.

    Article  MathSciNet  Google Scholar 

  • Lu Qui-keng (1965): On the Cauchy-Fantappiè formula. Acta Math. Sin. 16, No. 3, 344–363, Zbl. 173, 329.

    Google Scholar 

  • Manin, Yu.I. (1984): Gauge Fields and Complex Geometry. Moscow: Nauka. Engl. transl.: Berlin, Heidelberg, New York: Springer-Verlag, 1988, Zbl.576.53002.

    MATH  Google Scholar 

  • Martineau, A. (1964): Distributions et valeurs au bord des fonctions holomorphes. Proc. Intern. Summer Course on the Theory of Distributions. Lisboa, 195–326.

    Google Scholar 

  • Martineau, A. (1970): Le “edge of the wedge theorem” en théorie des hyperfonctions de Sato. Proc. Int. Conf. Funct. Anal Rel. Topics, Tokyo 1969, 95–106, Zbl.193, 415.

    Google Scholar 

  • Matsushima, Y. (1972): On tube domains. In: Symmetric Spaces, Pure Appl. Math. 8, 255–270, Zbl.232.32001.

    MathSciNet  Google Scholar 

  • Mitchell, J., Sampson, G. (1982): Singular integrals on bounded symmetric domains in ℂn. J. Math. Anal Appl. 90, No. 2, 371–380, Zbl.506.32017.

    Article  MathSciNet  MATH  Google Scholar 

  • Monopoles (1985): (Collection of papers translated into Russian). Ed.: Monastyrski, M.I., Sergeev, A.G.; Moscow: Mir.

    Google Scholar 

  • Morimoto, M. (1973): Edge of the wedge theorem and hyperfunction. Lect. Notes Math. 287. Berlin, Heidelberg, New York: Springer-Verlag, 41–81, Zbl.262.46043.

    Google Scholar 

  • Morimoto, M. (1980): Analytic functionals on the Lie sphere. Tokyo J. Math. 3, No. 1, 1–35, Zbl.454.46032.

    Article  MathSciNet  MATH  Google Scholar 

  • Murakami, S. (1972): On automorphisms of Siegel domains, Lect. Notes Math. 286. Berlin, Heidelberg, New York: Springer-Verlag, 95 pp., Zbl.245.32001.

    Google Scholar 

  • Nagel, A. (1976): Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains. Duke Math. J. 43, No. 2, 323–348, Zbl.343.32016.

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, R. (1980): The complex geometry of the natural world. Proc. Int. Congr. Math., Helsinki 1978, Vol. 1, 189–194, Zbl.425.53033.

    MathSciNet  Google Scholar 

  • Penrose, R. (1968): The structure of space-time. Battelle Rencontres, 1967, Lect. Math. Phys., 121–235, Zbl. 174, 559.

    Google Scholar 

  • Pflug, P. (1974): über polynomiale Funktionen auf Holomorphiegebieten. Math. Z. 139, No. 2, 133–139, Zbl.278.32011.

    Article  MathSciNet  MATH  Google Scholar 

  • Pinchuk, S.I. (1992): CR transformations of real manifolds in ℂn. Indiana Univ. Math. J. 41, No. 1, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Piatetski-Shapiro, I.I. (1961): Geometry of Classical Domains, and Theory of Automorphic Functions. Moscow: GOSIZDAT. 191 pp. French transl.: Paris: Dunod 1966, Zbl.137, 275, Zbl.142, 51.

    Google Scholar 

  • Polyakov, P.L. (1985): Solution of the ∂-equation with estimates in tube domains. Usp. Mat. Nauk 40, No. 1, 213–214. Engl. transl.: Russ. Math. Surv. 40, No. 1, 235-236 (1985), Zbl.593.32013.

    MathSciNet  Google Scholar 

  • Rigoli, M., Travaglini, G. (1983): A remark on mappings of bounded symmetric domains into balls. Lect. Notes Math. 992. Berlin, Heidelberg, New York: Springer-Verlag, 387–390, Zbl.552.32020.

    Google Scholar 

  • Rossi, H., Vergne, M. (1976): Equations de Cauchy-Riemann tangentielles associées à un domaine de Siegel. Ann. Sci. Ec. Norm. Supér., IV Sér. 9, No. 1, 31–80, Zbl.398.32018.

    MathSciNet  MATH  Google Scholar 

  • Rothaus, O.S. (1960): Domains of positivity. Abh. Math. Semin. Univ. Hamb. 24, 189–235, Zbl.96, 279.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W. (1969): Function Theory in Polydiscs. New York: Benjamin, 188 pp. Zbl. 177, 341.

    MATH  Google Scholar 

  • Rudin, W. (1971a): Harmonic analysis in polydiscs. Actes Congr. Int. Math., Nice, 1970, t. 2, 489–493, Zbl.233.32002.

    Google Scholar 

  • Rudin, W. (1971b): Lectures on the Edge-of-the-Wedge theorem. Reg. Conf. Ser. Math. 6. Providence: Am. Math. Soc., 30 pp., Zbl.214, 90.

    Google Scholar 

  • Rudin, W. (1978): Peak-interpolation sets of class C 1. Pac. J. Math. 75, No. 1, 267–279, Zbl.383.32007.

    MathSciNet  MATH  Google Scholar 

  • Rudin, W. (1980): Function Theory in the Unit Ball of ℂn. New York, Berlin, Heidelberg: Springer-Verlag, 436 pp., Zbl.495.32001.

    Book  Google Scholar 

  • Saerens, R. (1984): Interpolation manifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11, No. 2, 177–211, Zbl.579.32023.

    MathSciNet  MATH  Google Scholar 

  • Sato, M. (1959-1960): Theory of hyperfunctions, I, II. J. Fac. Sci. Univ. Tokyo, Sect. I 8, No. 1, 139–193, Zbl.87, 314. No. 2, 387-437, Zbl.97, 314.

    Google Scholar 

  • Sato, M., Kawai, T., Kashiwara, M. (1973): Microfunctions and pseudodifferential equations. Lect. Notes Math. 287. Berlin, Heidelberg, New York: Springer-Verlag, 265–529, Zbl.277.46039.

    Google Scholar 

  • Schapira, P. (1970): Théorie des Hyperfonctions. Lect. Notes Math. 126, Berlin, Heidelberg, New York: Springer-Verlag, 157 pp., Zbl. 192, 473.

    Google Scholar 

  • Schmid, W. (1969): Die Randwerte holomorpher Funktionen auf Hermiteschen symmetrischen Räumen. Invent. Math. 9, No. 1, 61–80, Zbl.219.32013.

    Article  MathSciNet  MATH  Google Scholar 

  • Sergeev, A.G. (1975): Multiplicative theory of hyperfunctions. Usp. Mat. Nauk 30, No. 1, 257–258 (Russian), Zbl.379, 46034.

    MathSciNet  MATH  Google Scholar 

  • Sergeev, A.G. (1978): Multidimensional factorization problem. Proc. All-Union Conf. on PDEs. Moscow, 440–441 (Russian).

    Google Scholar 

  • Sergeev, A.G. (1983): Complex geometry and integral representations in the future tube in ℂ3. Teor. Mat. Fiz. 54, No. 1, 99–110. Engl. transl.: Theor. Math. Phys. 54, 62-70 (1983), Zbl.529.32001.

    Article  MathSciNet  MATH  Google Scholar 

  • Sergeev, A.G. (1985): Estimates for the Bergman projector in the future tube. Multidim. Compl. Anal., Krasnojarsk, SOAN SSSR, 161–172 (Russian).

    Google Scholar 

  • Sergeev, A.G. (1986): Complex geometry and integral representations in the future tube. Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 6, 1241–1275, 1343-1344. Engl. transl.: Math. USSSR, Izv. 29, 597-628 (1987), Zbl.618.32001.

    MathSciNet  MATH  Google Scholar 

  • Sergeev, A.G. (1988): On the behavior of solutions of the ∂-equation on the boundary of the future tube. Dokl. Akad. Nauk SSSR 298, No. 2, 294–298. Engl. transl.: Sov. Math., Dok. 37, No. 1, 83-87 (1988), Zbl.691.32007.

    Google Scholar 

  • Sergeev, A.G. (1989): On complex analysis in the future tube. Compl. Anal. Appl. 87, Sofia, 450–459.

    MathSciNet  Google Scholar 

  • Sergeev, A.G. (1991): On complex analysis in tube cones. Proc. Sympos. Pure Math. 52, Part 1, 173–190.

    MathSciNet  Google Scholar 

  • Sergeev, A.G., Vladimirov, V.S. (1985): A compactification of Minkowski space and complex analysis in the future tube. Ann. Pol. Math. 46, No. 1, 439–454 (Russian), Zbl.602.32010.

    MathSciNet  MATH  Google Scholar 

  • Siciak, J. (1969): Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of ℂn. Ann. Pol. Math. 22, No. 2, 145–171, Zbl.185, 152.

    MathSciNet  MATH  Google Scholar 

  • Siegel, C.L. (1949): Analytic Functions of Several Complex Variables. Princeton: Inst. Adv. Stud., 200 pp., Zbl.36, 50.

    Google Scholar 

  • Stein, E.M. (1971): Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups. Actes Congr. Int. Math., Nice, 1970, 1, 173–189, Zbl.252.43022.

    Google Scholar 

  • Stein, E.M. (1972): Boundary behaviour of holomorphic functions of several complex variables. Princeton: Princeton Univ. Press, 72 pp., Zbl.242.32005.

    Google Scholar 

  • Stein, E.M. (1983): Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals. Invent. Math. 74, No. 1, 63–83, Zbl.522.43007.

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E.M., Weiss, G. (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ. Press, 297 pp., Zbl.232.42007.

    MATH  Google Scholar 

  • Stein, E.M., Weiss, G., Weiss, M. (1964): H p classes of holomorphic functions in tube domains. Proc. Natl. Acad. Sci. USA 52 No. 4, 1035–1039, Zbl. 126, 94.

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E.M., Weiss, N.J. (1969): On the convergence of Poisson integrals. Trans. Am. Math. Soc. 140, 34–54, Zbl. 182.108.

    Article  MathSciNet  Google Scholar 

  • Stoll, M. (1974): Integral formulae for pluriharmonic functions on bounded symmetric domains. Duke Math. J. 41, No. 2, 393–404, Zbl.287.32020.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoll, M. (1976a): Harmonic majorants for plurisubharmonic functions on bounded symmetric domains with applications to the spaces H ϕ and N*. J. Reine Angew. Math. 282, 80–87, Zbl.318.32014.

    MathSciNet  MATH  Google Scholar 

  • Stoll, M. (1976b): The space N* of holomorphic functions on bounded symmetric domains. Ann. Pol. Math. 32, No. 1, 95–110, Zbl.284.32013.

    MathSciNet  MATH  Google Scholar 

  • Stoll, M. (1985): Mean growth and Fourier coefficients of some classes of holomorphic functions on bounded symmetric domains. Ann. Pol. Math. 45, No. 2, 161–183, Zbl.579.32022.

    MathSciNet  MATH  Google Scholar 

  • Stout, E.L. (1981): Interpolation manifolds. In: Recent Developments in Several Complex Variables. Ann. Math. Stud. 100, 373–391, Zbl.486.32010.

    MathSciNet  Google Scholar 

  • Tillmann, H.G. (1961a): Distributionen als Randverteilungen analytischer Funktionen. Math. Z. 76, No. 1, 5–21, Zbl.97, 96.

    Article  MathSciNet  MATH  Google Scholar 

  • Tillmann, H.G. (1961b): Darstellung der Schwartzschen Distributionen durch analytische Funktionen. Math. Z. 77, No. 2, 106–124, Zbl.99, 97.

    Article  MathSciNet  MATH  Google Scholar 

  • Twistors and Gauge Fields (1983): (Collection of papers translated into Russian). Ed.: Zharinov, V.V.; Moscow: Mir, 364 pp.

    Google Scholar 

  • Uhlmann, A. (1963): The closure of Minkowski space. Acta Phys. Pol. 24, No. 2, 295–296, Zbl. 115, 423.

    MathSciNet  MATH  Google Scholar 

  • Upmeier, H. (1984): Toeplitz C*-algebras on bounded symmetric domains. Ann. Math., II. Ser. 119, No. 3, 549–576, Zbl.549.46031.

    Article  MathSciNet  MATH  Google Scholar 

  • Vinberg, E.B. (1963): The theory of convex homogeneous cones. Tr. Mosk. Mat. O.-va 12, 303–358. Engl. transl: Trans. Mosc. Math. Soc. 1963, 340-403 (1965), Zbl.138, 433.

    MathSciNet  Google Scholar 

  • Vladimirov, V.S. (1960): On constructing the envelope of holomorphy for domains of special type. Dokl. Akad. Nauk SSSR 134, No. 2, 251–254. Engl. transl.: Sov. Math., Dokl. 1, 1039-1042 (1960), Zbl.118, 303.

    Google Scholar 

  • Vladimirov, V.S. (1961): On constructing the envelope of holomorphy for domains of special type and their applications. Tr. Mat. Inst. Steklova 6; 101–144. Engl. transl.: Am. Math. Soc., transl, II. Ser. 48, 107-150 (1965), Zbl.118, 303.

    Google Scholar 

  • Vladimirov, V.S. (1964): Methods of the Theory of Functions of Several Complex Variables. Moscow: Nauka, 410 pp. French transl: Les fonctions de plusieurs variables complexes et leur application. Paris: Dunod 1967, 338 pp., Zbl.125, 319.

    Google Scholar 

  • Vladimirov, V.S. (1965): The problem of linear conjugation of holomorphic functions of several complex variables. Izv. Akad. Nauk SSSR, Ser. Mat. 29, No. 4, 807–834. Engl transl: Am. Math. Soc., transl, II. Ser. 71, 203-232 (1968), Zbl.166, 337.

    MathSciNet  MATH  Google Scholar 

  • Vladimirov, V.S. (1969a): A generalization of the Cauchy-Bochner integral representation. Izv. Akad. Nauk SSSR, Ser. Mat. 33, No. 1, 90–108. Engl transl: Math. USSR, Izv. 3, 87-104 (1969), Zbl.183, 87.

    MathSciNet  MATH  Google Scholar 

  • Vladimirov, V.S. (1969b): Holomorphic functions with nonnegative imaginary part in a tube domain over a cone. Mat. Sb., Nov. Ser. 79, No. 1, 128–152. Engl transl: Math. USSR, Sb. 8, 125-146 (1969), Zbl.183, 87.

    Google Scholar 

  • Vladimirov, V.S. (1969c): Bogolubov’s “edge-of-the-wedge” theorem, its development and applications. Problems of Theoretical Physics. Moscow: Nauka, 61–67 (Russian).

    Google Scholar 

  • Vladimirov, V.S. (1969d): Linear passive systems. Theor. Mat. Fiz. 1, No. 1, 67–94. Engl transl: Theor. Math. Phys.

    Google Scholar 

  • Vladimirov, V.S. (1971): Analytic functions of several complex variables and axiomatic quantum field theory. Actes Congr. Int. Math. Nice, 1970, t. 3. Paris: Gauthier-Villars, 21–26.

    Google Scholar 

  • Vladimirov, V.S. (1972): Multidimensional linear passive systems. Meh. Splosn. Sredy rodstv. Probl Anal, 121–134 (Russian), Zbl.263.93019.

    Google Scholar 

  • Vladimirov, V.S. (1974, 1974, 1977): Holomorphic functions with positive imaginary part in the future tube. Mat. Sb. 93, No. 1, 3–17; II, 94, No. 4, 499-515: IV, 104, No. 3, 341-370. Engl transl: Math. USSR, Sb. 22 1-16; II, 23, 467-482; III, 27, 263-268; IV, 33, 301-325 (1975–1977); Zbl.291.32003; Zbl.313.32001; Zbl.319.32004; Zbl.383.32001.

    Google Scholar 

  • Vladimirov, V.S. (1976): Multidimensional generalization of a Tauberian theorem of Hardy-Littlewood. Izv. Akad. Nauk SSSR, Ser. Mat. 40, No. 5, 1084–1101. Engl transl: Math. USSR, Izv. 10, 1031-1048 (1978), Zbl.359.40001.

    MathSciNet  MATH  Google Scholar 

  • Vladimirov, V.S. (1978a): Holomorphic functions with nonnegative imaginary part in tube domains over cones. Dokl Akad. Nauk SSSR 239, No. 1, 26–29. Engl transl: Sov. Math., Dokl 19, 254-258 (1978), Zbl.448.32003.

    MathSciNet  Google Scholar 

  • Vladimirov, V.S. (1978b): Growth estimates for boundary values of positive pluriharmonic functions in a tube domain over a proper cone. Complex Analysis and its Applications. Moscow: Nauka, 137–148 (Russian), Zbl.447.31006.

    Google Scholar 

  • Vladimirov, V.S. (1979): Generalized Functions in Mathematical Physics, 2nd. ed. Moscow: Nauka, 319 pp. Engl. transl: Moscow: Mir, 362 pp, Zbl.515.46034.

    Google Scholar 

  • Vladimirov, V.S. (1982): Several complex variables in mathematical physics. Lect. Notes Math. 919. Berlin, Heidelberg, New York: Springer-Verlag, 358–386, Zbl.493.32014.

    Google Scholar 

  • Vladimirov, V.S. (1983): Functions of several complex variables in mathematical physics. In: Problems of Mathematics and Mechanics. Novosibirsk: Nauka, 15–32. Engl transl: transl, II. Ser., Am. Math. Soc. 136, 19-33 (1987), Zbl.625.32001.

    Google Scholar 

  • Vladimirov, V.S. (1984): Blaschke products in the generalized unit disc and complete orthonormal systems in the future tube. Tr. Mat. Inst. Steklova 166, 44–51. Engl transl: Proc. Steklov Inst. Math. 166, 45-52 (1986), Zbl.574.32007.

    MATH  Google Scholar 

  • Vladimirov, V.S., Zharinov, V.V. (1970): On a representation of Jost-Lehmann-Dyson type. Teor. Mat. Fiz. 3, 305–319. Engl. transl: Theor. Math. Phys. 3, No. 3, 525-536 (1970), Zbl.201, 582.

    Article  MATH  Google Scholar 

  • Weiss, N.J. (1972): Fatou’s theorem for symmetric spaces. In: Symmetric Spaces, Pure Appl. Math. 8, 413–441, Zbl.242.43011.

    Google Scholar 

  • Wolf, J.A. (1972): Fine structure of Hermitian symmetric spaces. In: Symmetric Spaces, Pure Appl. Math. 8, 271–357, Zbl.257.32014.

    Google Scholar 

  • Yang, P. (1984): Geometry of tube domains. Proc. Symp. Pure Math. 41, 277–283, Zbl.579.32050.

    Google Scholar 

  • Yang, P.C. (1982): Automorphisms of tube domains. Am. J. Math. 104, No. 5, 1005–1024, Zbl.514.32018.

    Article  MATH  Google Scholar 

  • Zakharyuta, V.P. (1976): Separately analytic functions, generalization of the Hartogs theorem and envelopes of holomorphy. Mat. Sb., Nov. Ser. 101, No. 1, 57–76. Engl. transl.: Math. USSR, Sb. 30, 51-67 (1978), Zbl.357.32002.

    Google Scholar 

  • Zharinov, V.V. (1980): On an exact squence of modules and Bogolubov’s “edge-of-the-wedge” theorem. Dokl. Akad. Nauk SSSR 251, No. 1, 19–22. Engl. transl.: Sov. Math., Dokl. 21, 357-360 (1980), Zbl.478.46046.

    MathSciNet  Google Scholar 

  • Zharinov, V.V. (1983): Distributive lattices and their applications in complex analysis. Tr. Mat. Inst. Steklova 162, 3–80. Engl. transl.: Proc. Steklov Inst. Math. 162, Providence, 79 pp. (1985), Zbl.574.32017.

    MathSciNet  Google Scholar 

  • Zygmund, A. (1958): Trigonometric Series, Vol. 1, 2. 2nd. ed. Cambridge: Cambridge University Press, Zbl.85, 56, Zbl.1 1, 17.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sergeev, A.G., Vladimirov, V.S. (1994). Complex Analysis in the Future Tube. In: Khenkin, G.M., Vitushkin, A.G. (eds) Several Complex Variables II. Encyclopaedia of Mathematical Sciences, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57882-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57882-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63391-1

  • Online ISBN: 978-3-642-57882-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics