Skip to main content

Refractory Soil Organic Matter — Formation, Accumulation, Translocation and Transformation

  • Chapter
Geoecology of Antarctic Ice-Free Coastal Landscapes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 154))

Abstract

Soil formation in the Antarctic is a recognised process. The occurrence of accumulations of organic matter despite a hostile climate, and formation of organic soils by debris of mosses, lichens and algae is widespread (Campbell and Claridge 1987; Beyer et al. 1999). This leads to mineral soils which may contain large amounts of soil organic matter in the maritime Antarctic (Blume et al. 1996). In contrast, patches of organic soils are associated locally with shallow mineral soils in coastal regions of East Antarctica (Beyer et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beyer L (2000) Properties, formation and geo-ecological significance of organic soils in the coastal region of East Antarctica (Wilkes Land). Catena 39:79–93

    Article  CAS  Google Scholar 

  • Beyer L, Bölter M (2000) Chemical and biological properties, formation, occurrence and classification of spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119

    Article  CAS  Google Scholar 

  • Beyer L, Schulten H-R, Fründ R (1992) Properties and composition of soil organic matter in forest and arable soils in Schleswig-Holstein. 1. Comparison of morphology and results of wet chemistry, CPMAS 13C-NMR spectroscopy and pyrolysis mass spectrometry. Z Pflanzenernähr Bodenkd 155:345–354

    Article  CAS  Google Scholar 

  • Beyer L, Wachendorf C, Koebbemann C (1993) A simple wet chemical extraction procedure to characterize soil organic matter. 1. Application and recovery rate. Comm Soil Sci Plant Anal 24:1645–1663

    Article  Google Scholar 

  • Beyer L, Blume H-P, Knicker H, Bölter M (1997) Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station, Wilkes Land) and spodic horizons in soils of Germany. Soil Sci 162:518–527

    Article  CAS  Google Scholar 

  • Beyer L, Bockheim JG, Campbell IB, Claridge GGC (1999) Genesis, properties and sensitivity of Antarctic Gelisols. Antarct Sci 11:387–398

    Article  Google Scholar 

  • Beyer L, White DW, Bölter M (2001) Organic matter composition, and transformation, and microbial colonisation of Gelic Podzols in the coastal region of East Antarctica. Austr J Soil Res 39:543–563

    Article  CAS  Google Scholar 

  • Beyer L, Pingpank K, Wriedt G, Bölter M (2000a) Soil formation in coastal continental Antarctica. Geoderma 95:283–304

    Article  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000b) Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Island region of East Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Birkenmajer K (1989) A guide to tertiary geochronology of King George Island, West Antarctica Pol Polar Res 10:555–579

    Google Scholar 

  • Blume H-P, Beyer L, Friedrich F (1991) Correlations between microbial activity and water, air temperature and nutrient status of different soils under different land use. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 321–346

    Google Scholar 

  • Blume H-P, Schneider D, Bölter M (1996) Organic matter accumulation in and podzolization of Antarctic soils. Z Pflanzenernähr Bodenkd 159:411–412

    Article  CAS  Google Scholar 

  • Blume H-P, Beyer L, Bölter M, Erlenkeuser H, Kalk E, Kneesch S, Pfisterer U, Schneider D (1997) Pedogenic zonation in soils of Southern circumpolar region. Adv GeoEcol 30:69–90

    CAS  Google Scholar 

  • Bockheim JG, Everett IR, Hinkel KM, Nelson FE, Brown J (1999) Soil organic carbon storage and distribution in Arctic Tundra, Barrow, Alaska. Soil Sci Soc Am J 63:934–940

    Article  CAS  Google Scholar 

  • Bölter, M (1995) Distribution of bacterial numbers and biomass in soils and on plants from King George Island (Arctowski Station, maritime Antarctica). Polar Biol 15:115–124

    Article  Google Scholar 

  • Bölter M (1997) Microbial communities in soils and on plants from King George Island (Arctowski Station, Maritime Antarctica). In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. University Press, Cambridge, pp 162–169

    Google Scholar 

  • Bölter M, Blume H-P, Erlenkeuser H (1994) Pedogenic, isotopic and microbiological properties of Antarctic soils. Polarforschung 64:1–7

    Google Scholar 

  • Bölter M, Blume H-P, Schneider D, Beyer L (1997) Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarct Polar Biol 18:295–304

    Article  Google Scholar 

  • Breitmaier E, Voelter W (1990) Carbon-13 NMR spectroscopy Verlag Chemie, Weinheim

    Google Scholar 

  • Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10:376–385

    Article  Google Scholar 

  • Calace N, Campanella L, de Paolis F, Petronto BM (1995) Characterization of humic acids isolated from Antarctic soils. Int J Environ Anal Chem 60:71–78

    Article  CAS  Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam

    Google Scholar 

  • Campbell IB, Claridge GGC, Campbell DI, Balks MR (1998) Short-and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec 34:15–24

    Article  Google Scholar 

  • Capriel P, Beck T, Borchert H, Grönholz A, Zachmann G (1995) Hydrophobicity of the organic matter in arable soils. Soil Biol Biochem 27:1453–1458

    Article  CAS  Google Scholar 

  • Chapman BE, Roser DJ, Seppelt RD (1994) 13C-NMR analysis of Antarctic cryptogam extracts. Antarct Sci 6:295–305

    Article  Google Scholar 

  • Chen J, Blume H-P (1998) Impact of human activities on the terrestrial ecosystems of Antarctica — a review. Polarforschung 65:83–92

    CAS  Google Scholar 

  • Fründ R, Lüdemann H-D (1989) The quantitative analysis of the solution-and CPMAS 13C-NMR spectra of humic material. Sci Total Environ 81/82:157–168

    Article  Google Scholar 

  • Gelin F, Gatellier J-PLA, Sinninghe Damst é JS, Metzger P, Derenne S, Largeau C, de Leeuw JW (1993) Mechanisms of flash pyrolysis of ether lipids isolated from the green microalga Botryococcus braunii race A. J Anal Appl Pyrol 27:155–168

    Article  CAS  Google Scholar 

  • Goodwin ID (1993) Holocene deglaciation, sea-level change, and the emergence of the Windmill Islands, Budd Coast, Antarctica. Quat Res 40:70–80

    Article  Google Scholar 

  • Hurst HM, Burges NA (1967) Lignin and humic acids. In: McLaren AD, Peterson GH (eds) Soil biochemistry, vol 1. Marcel Dekker, New York, pp 260–286

    Google Scholar 

  • ISSS-WRB [International Soil Science Society — World Reference Base for Soil Resources] (1998) world Reference base for soil resources. World Soil resources Reports 84, ISSS-ISRIC-FAO, Rome

    Google Scholar 

  • Kögel-Knabner I (1993) Biodegradation and humification processes in forest soils. In: Bollag, JM, Stotzky G (eds) Soil biochemistry, vol 8. Marcel Dekker, New York, pp 101–135

    Google Scholar 

  • Komárková, V (1985) Two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arct Alp Res 17:401–417

    Article  Google Scholar 

  • Kuhn D (1997) Genese, Ökologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der King George Insel, West-Antarktis. Schriftenr Inst Bodenkd Univ Kiel 40:1–173

    Google Scholar 

  • Largeau C, Derenne S, Casadevall E, Berkaloff C, Corolleur M, Lugardon B, Paynaud JF, Connan J (1990) Occurrence and origin of 'ultra laminar' structures in 'amorphous' cerogens of various source rocks and oil shales. Org Geochem 16:889–895

    Article  CAS  Google Scholar 

  • Lewis Smith RI (1990) Plant community dynamics in Wilkes Land, Antarctica. Proc NIPR Symp Polar Biol 3:229–244

    Google Scholar 

  • McKeague JA, DeConnick F, Franzmeier DP (1983) Spodosols. In: Wildung LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy. II. The soil orders. Elsevier, Amsterdam, pp 217–252

    Chapter  Google Scholar 

  • Nip M, Tegelaar EW, de Leeuw JW, Schenck EW (1986) A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticulas. Naturwissenschaften 73:579–585

    Article  CAS  Google Scholar 

  • Paul E, Stüwe K, Teasdale J, Worley B. (1995) Structural and metamorphic geology of the Windmill Islands, east Antarctica: field evidence for repeated tectonothermal activity. Aust J Earth Sci 42:453–469

    Article  Google Scholar 

  • Post B, Hempfling H, Klamberg H, Schulten H-R (1988) Zur Charakterisierung von Boden-Huminstoffen. Fresenius Z Anal Chem 331:273–281

    Article  CAS  Google Scholar 

  • Rakusa-Suszczewski S, Mietus S, Piasecki J (1993) Weather and Climate. In: Rakusa Suszczewski S (ed) The maritime Antarctic ecosystems of Admiralty Bay. Department of Antarctic Biology, Polish Academy of Sciences, Warsawa, pp 19–25

    Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum. 2. Aufl. Blackwell, Berlin

    Google Scholar 

  • Schnitzer M, Schulten H-R (1992) The analysis of soil organic matter by pyrolysis-field ionization mass spectrometry. Soil Sci Soc Am J 54:98–105

    Google Scholar 

  • Schnitzer M, Tarnocai C, Schuppli P, Schulten H-R (1990) Nature of the organic matter in Tertiary Paleosols in the Canadian Arctic. Soil Sci 149:257–267

    Article  CAS  Google Scholar 

  • Seppelt RD, Broady, PA (1988) Antarctic terrestrial ecosystems: the Vestfold Hills in context. In: Ferris JM, Burton HR, Bayly IAE (eds) Biology of the Vestfold Hills, Antarctica. Kluwer, Dordrecht, pp 177–184

    Chapter  Google Scholar 

  • Soil Survey Staff (1998): Keys to soil taxonomy, 8th edn, US Dept Agric, Nat Res Counc, Washington, DC

    Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines. Soil Biol Biochem19:381–390

    Article  CAS  Google Scholar 

  • White D M, Beyer L (1999) Pyrolysis-GC/MS and GC/FID of three Antarctic soils. J Anal Appl Pyrol 50:63–76

    Article  CAS  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Wilson MA (1990) Application of nuclear magnetic resonance spectroscopy to whole soil. In: MacCarthy P, Clapp CE, Malcolm RL, Blomm PR (eds) Humic substances in soil and crop sciences. American Soil Science Society, Madison, Wisconsin, pp 221–260

    Google Scholar 

  • Wilson MA, Goh KM, Collin PJ, Greenfield LG (1986) Origins of humus variations. Org Geochem 9:225–231

    Article  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146

    Article  Google Scholar 

  • Wynn-Williams DD (1993) Microbial processes and initial stabilization of fellfield soil. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 17–32

    Google Scholar 

  • Ziechmann W (1980) Huminstoffe. Verlag Chemie, Weinheim

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blume, HP. et al. (2002). Refractory Soil Organic Matter — Formation, Accumulation, Translocation and Transformation. In: Beyer, L., Bölter, M. (eds) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56318-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62674-6

  • Online ISBN: 978-3-642-56318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics