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Abstract. Collective communication is of great importance in MPI be-
cause the execution time of an MPI program is affected by the commu-
nication performance it can gain. Particularly these days, when a cluster
system composed of multiple computing nodes has become dominant as
a large-scale computing system, the execution time of collective commu-
nication affects the total execution time of the MPI program. However, in
many implementations of MPI, collective communication is developed to
make use of unicast-based communication in a repeated and combined
way, which may result in inefficient communication. In this paper, we
explore the use of a Software-Defined Network, which was originally ex-
pected to help network administrators operate networks through central
control in a software-programming manner, to accelerate MPI_Bcast, a
basic collective communication used in MPI. The evaluation in this paper
indicates that our prototyped SDN_MPI_Bcast is superior to MPI_Bcast in
OpenMPI in communication performance. Also, the evaluation implies
that SDN_MPI_Bcast is feasible.

1 Introduction

Message Passing Interface (MPI) [1,2] has been a de facto standard API in
parallel and distributed computing for around two decades. MPI provides pro-
grammers with APIs for point-to-point and collective communication, by tak-
ing into consideration possible communication patterns occurring in parallel and
distributed computing. Conventional cost-sensitive clusters are usually equipped
and configured with gigabit Ethernet switches and famous MPI software, such
as OpenMPI [3]. With those combinations, collective communications are imple-
mented as a set of multiple point-to-point communications, which might incur
performance penalties caused from packet congestion [4,5].

In this research, we explore a novel method for implementing MPI collective
communication leveraging the controllability of interconnect network, brought by
Software-Defined Network (SDN) [6,7]. SDN is a new concept of network architec-
ture that enables dynamic control and management in a software-programming
manner. SDN is expected to facilitate the daily operations of network administra-
tors. As a proof of concept, we propose an SDN-enabled version of MPI_Bcast, the
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most basic collective communication, by overturning the conventional assumption
that a network is not controllable during computation.

The remaining part of this paper is as follows. Section 2 briefly introduces SDN
and then describes the basic idea and approach to MPI Broadcast leveraging
SDN. Subsequently, in Section 3, we present the blueprint architecture of MPI
Broadcast utilizing the functionalities offered by SDN and then we detail how it
is prototyped. In Section 4, an evaluation is conducted to verify the feasibility
of our approach of using SDN for MPI Broadcast. Section 5 describes related
works. Section 6 concludes the paper.

2 Approach

2.1 Software-Defined Network

Software-Defined Network (SDN) is a new concept of network architecture that
separates traditional networking functions into a network control plane (SDN
controller) and a data plane (network devices such as switches) [6,7]. Figure
1a shows the layered architecture of SDN. In SDN, a program deployed on the
Control Plane works as a SDN controller and is in charge of delivering a set of
rules instructing how to deal with network flows to network devices through a
Control Data Plane Interface. On the other hand, each of the network devices
in the Data Plane is responsible for dealing with network flows according to the
rule set delivered by the SDN controller. A promising feature of SDN is that it
allows user applications such as MPI programs to interact with SDN controllers.

(a) Layered Architecture (b) Controlling Example

Fig. 1. Architecture of Software-Defined Network

From the administrative perspective, SDN is operated as follows. In the case
that a network administrator wants to send a specific series of packets to SDN
switch 4 from SDN switch 1 via SDN switch 2, all the administrator has to do in
SDN is to write and deploy a program as a SDN controller, so that it sends a set
of rules describing how to deal with the corresponding series of packets to SDN
switches 1, 2 and 4 (Fig. 1b). This behavior is explained from the following SDN
mechanism. Under the SDN, whenever the SDN switch receives any packet with
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which it does not know how to deal, it sends a query in terms of how to deal
the packet to the SDN controller. After receiving the packet, the SDN controller
informs the SDN switch of a set of rules. In this example case, once the SDN
controller installs rules to SDN switch 1, 2, and 4, the specific series of packets
is set to flow along the red-arrow path in the figure. Also, in the case that the
network administrator wants to set a network flow from SDN switch 1 to SDN
switch 4 via SDN switch 3 for another specific series of packets, all the network
administrator has to do is to modify the program as a SDN controller.

Currently, OpenFlow [8,9] is a de facto standard implementation of SDN. It
provides a suite of communication interfaces between the Control Plane and
Data Plane [6]. In this feasibility study, OpenFlow is integrated into MPI_Bcast.

2.2 Basic Idea Behind the Proposed Solution

The programmability of SDN allows the SDN controller to install a set of rules
that duplicate and send incoming packets to specified multiple ports on switches.
We approach the SDN-version of MPI_Bcast, based on the simple idea that
execution time of MPI_Bcast can be reduced by duplicating packets on the switch
along the data delivery route from a process to remained processes. Specifically,
in the case that a process attempts to broadcast data to remained processes,
duplicating packets from an incoming port to multiple outgoing ports based on
a broadcast tree could lead to the reduction of MPI_Bcast execution time. This
duplication method is considered to be possible because data on the fly to all
remained processes from a source process are identical in MPI Broadcast except
for packet headers (Ethernet and IP headers).

Fig. 2. Basic idea towards SDN MPI Broadcast

Figure 2 illustrates the basic idea regarding how to realize an MPI_Bcast using
SDN. Assume that 4 processes of an MPI program are running on a computing
environment composed of 7 computers, which are connected to a SDN. Also, the
figure assumes that Process 0 (P0) is about to broadcast data to P1, P2, and
P3. Under this assumption, our proposed method is expected to work as follows.
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First, the packet sent by P0 is first delivered to port 2 on SDN switch 2. Then,
based on a packet matching rule provided by the SDN controller, SDN switch 2
duplicates and sends it out to port 1 and 4 (respectively for SDN switch 1 and
P2). Next, SDN switch 1 forwards data to port 2 (for SDN switch 3) based on
the packet matching rule provided by the SDN controller. Finally, SDN switch 3
receives data through port 1 from SDN switch 1. Then SDN switch 3 duplicates
data and sends it out to port 2 and 4 (respectively for P3 and P4).

3 Design and Implementation of SDN-Based MPI
Broadcast

3.1 Design of SDN-Based MPI Bcast

In order to realize MPI Broadcast using the proposed method explained in Sec-
tion 2, MPI processes need to interact with a SDN controller for at least two
kinds of information before computation. The following discussion assumes only
one process runs on a computing node for simplification.

1. A list of IP addresses of computers, which are used in the MPI Broadcast.
The SDN controller needs to understand which computers are used in the
MPI Broadcast.

2. A special ID for identifying the target MPI Broadcast packets. The identifi-
cation of MPI Broadcast packets is required because SDN switches need to
duplicate only the target MPI Broadcast packets selectively.

To share the first piece of information between the MPI processes and the
SDN controller, a master process of the MPI program is designed to send the
list of IP addresses of computers that involve computation to the SDN controller.
After obtaining the list, the SDN controller builds a broadcast tree based on it
and then creates duplication rules of SDN switches.

To share the second piece of information, we have decided to use a special
destination MAC address as an ID. For this purpose, the SDN controller is
designed to generate a special MAC address and then send this address to a
master process of the MPI program. Through this design, when a process of the
MPI program broadcasts data, the process sets the special MAC address into a
series of MPI broadcast packets before broadcasting the data.

Figure 3 shows how an MPI program should interact with the SDN controller
to realize the SDN-based MPI Broadcast method in detail. The interaction be-
tween them takes place as follows.

1. The SDN controller obtains the topology of a network composed of switches
and computers, where the computation of the MPI program is performed.
Subsequently, the SDN controller waits for the MPI program’s connection.

2. All processes of the MPI program initialize the MPI execution environment.
3. After the initialization, a master process of the MPI program sends the IP

address list of computers participating in the computation. Then, the MPI
program waits for a reply from the SDN controller.
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4. After the SDN controller receives the list, it builds a broadcast tree based
on the list and the topology.

5. After the broadcast tree is built, the SDN controller generates an ID (special
MAC address) for a series of the target of MPI Broadcast packets. Impor-
tantly, the ID is assigned to each MPI_Bcast invoked in the computation.

6. The SDN controller makes a set of duplication rules, which instruct packets of
the target MPI_Bcast to flow from a source process to the remained processes
on a broadcast tree. The rules are then deployed onto SDN switches.

7. The SDN controller sends the ID for the MPI Broadcast to the MPI program.
8. After a master process receives the ID from the SDN controller, it sends the

ID to processes so that the remained processes use it in receiving the target
broadcast packets.

9. After the eight steps above, processes can invoke the SDN-based MPI_Bcast.

Fig. 3. Interaction model in SDN-based MPI Broadcast

3.2 Implementation of SDN MPI Broadcast

Based on the design in Section 3.1, we have developed the SDN-based MPI
Broadcast utilizing OpenMPI version 1.6.3. The prototyped MPI_Bcast is com-
posed of two modules; the SDN controller module and the SDN MPI Broadcast
library.

SDN controller module. For implementation of the SDN controller, POX [10],
which is a development framework for the OpenFlow controller developed in
Python version 2.7, has been adopted. POX supports the OpenFlow version
1.0 specification at the time of writing this paper. The SDN controller module
has been developed to offer the functions shown in Fig. 3. To understand the
network topology, we plan to use an LLDP-based topology understanding mech-
anism, which our research team has developed in another project [11]. In the
current stage of this research, however, the information on network topology is
set manually because learning the topology is beyond this paper’s scope. For
the function of building the broadcast tree, the SDN controller was developed to
simply use the minimum number of hops (using the Floyd-Warshall algorithm).



890 K. Dashdavaa et al.

In the near future, however, a more sophisticated method of building the tree
is necessary because we have currently assumed for simplification that only a
set of MPI programs are executed on a cluster system and thus any background
traffic does not exist.

SDN MPI Broadcast Library. The MPI program needs to call MPI_Init for
initialization and MPI_Finalize to finalize the MPI execution environment.
The MPI program performs a computation job between these APIs. Taking
this execution mechanism into consideration, we have developed a new SDN
MPI Broadcast Library called sdn_mpi_bcast. This library contains two APIs;
SDN_MPI_Init and SDN_MPI_Bcast.

SDN MPI Init: This API is implemented to offer the functions shown in the
dotted part in Fig. 3. This API provides MPI programs with the functions of
exchanging the IP address list of computers participating in the computation
as well as the ID for identifying the SDN MPI Broadcast packets between
the MPI program and the SDN controller. When this API is called, a process
receiving the ID sends it to the remained processes.

SDN MPI Bcast: This API broadcasts data by the proposed method. For this
purpose, SDN_MPI_Bcast sets up a destination MAC address in broadcasting
packets. We have developed a library, called my_raw_packet, which can send
and receive raw packets by setting packet headers manually. This API has
been developed on my_raw_packet library.

Importantly, the MPI program with SDN_MPI_Bcast is written the same way
as OpenMPI. In detail, to use the proposed SDN_MPI_Bcast, the developer just
needs to replace MPI_Bcast with SDN_MPI_Bcast.

4 Evaluation

4.1 Experimental Environment

An experiment has been conducted to compare the execution time of MPI_Bcast
and SDN_MPI_Bcast implemented in OpenMPI. Also, we have measured the time
required for SDN_MPI_Init to learn the setup cost required for our proposed
method. Figure 4 illustrates the experimental environment. The experiment was
performed on a cluster system which consists of 27 physical computing nodes and
3 OpenFlow switches. OpenFlow switches are 1 Gb/s bandwidth Programmable-
Flow PF5240 Switch, and each node has Intel(R) Xeon(R) 2.00 GHz processors.
For this experiment, two of three OpenFlow switches were configured to function
as two logical OpenFlow switches.
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Fig. 4. Experimental environment

4.2 Experimental Method

In this experiment, execution time of our SDN_MPI_Bcast and MPI_Bcast in
OpenMPI was measured and compared through the use of a simple MPI program
that just broadcasts an integer array. In this measurement, we have adopted
the average execution time spent for broadcast in each of the MPI processes.
Furthermore, to obtain execution time, we performed the program 20 times and
adopted a average execution time of 20 measurements as the measurement result.
A fraction of the MPI program is shown in Fig. 5. MPI_Wtime, which returns
time in seconds, since an arbitrary time in the past [2] was used for measuring
time. The execution time of SDN_MPI_Bcast and MPI_Bcast in OpenMPI was
measured in the following two ways.

Initialize MPI execution environment

...

SDN_MPI_Init ( ... ); // For connection with the SDN controller

start = MPI_Wtime ();

MPI_Bcast ( ... ) or SDN_MPI_Bcast ( ... );

end = MPI_Wtime ( ... );

diff_time_on_each_process[] <- end - start // in seconds

average_difference_time = average(diff_time_on_each_process[])

...

Finalize MPI execution environment

Fig. 5. A fraction of MPI program used in the experiment

(a) Measure the execution time of MPI Broadcast by running 27 processes for
the MPI program, and by changing the data size of the integer array to be
broadcast.

(b) Measure the execution time of MPI Broadcast by running the MPI program
whose integer array is 4000 in size, and by changing the number of processes.

Furthermore, to investigate the overhead incurred for the initialization process
(the dotted part in Fig. 3), we have measured the execution time of SDN_MPI-
_Init. The average execution time of SDN_MPI_Init of 20 measurements has
been taken.
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4.3 Experimental Result

Figure 6a plots two series of the obtained measurement time in both MPI_Bcast

in OpenMPI and our SDN_MPI_Bcast in case (a). The vertical axis is the mea-
sured execution time, and the horizontal axis is the size of data to broadcast. The
graph indicates that our SDN_MPI_Bcasthas better performance than MPI_Bcast

in OpenMPI in terms of execution time.
Figure 6b shows the measurement result of case (b). The vertical axis is the

measured execution time, and the horizontal axis is the number of processes
used in the experiment. The graph indicates that the proposed SDN_MPI_Bcast

is superior to the MPI_Bcast and also that SDN_MPI_Bcast scales well against
process number.

Figure 6c shows the measurement result of SDN_MPI_Init. The vertical axis is
the measured execution time and the horizontal axis is the number of processes
used in the experiment.
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Fig. 6. Execution time

4.4 Insights

In case (a), as broadcasting data size increased, SDN_MPI_Bcast had a bet-
ter performance than MPI_Bcast. Also, the execution time of SDN_MPI_Bcast
did not increase as quickly as MPI_Bcast when the size of broadcasting data
changed. In case (b), the graph shows that SDN_MPI_Bcast becomes faster than
MPI_Bcast as process number grows. The reason can be explained from the fact
that MPI_Bcast in OpenMPI uses point-to-point communication repeatedly for
a call of MPI_Bcast, while SDN_MPI_Bcast delivers data from source to remained
processes along a broadcast tree optimized on the network topology.

In addition, the execution time of SDN_MPI_Initwas less than 10 milliseconds
when process and switch numbers were 27 and 5, respectively. It could take more
time with both the number of processes and switches increased. However, this
API has to be called only once in the beginning of the program. Therefore, the
execution time of SDN_MPI_Init is not considered a big problem for jobs which
take a long time.
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5 Related Works

To date, much research related to the acceleration of the MPI Broadcast has
been reported. As to MPI Broadcast, several research groups have worked on
acceleration of MPI_Bcast on InfiniBand, which is a major high-performance in-
terconnect technology available today. Representative examples of such research
include [12] and [13]. In these works, to realize MPI_Bcast on the top of hardware
multicast supported by InfiniBand, the authors have tackled common issues such
as unreliability of message delivery, large message handling, and in-order deliv-
ery. The experience and expertise reported in these works can be combined with
our research from now on. Our research differs from previous research in terms of
target interconnect and research motivation. We are motivated to challenge how
HPC technology can be changed by regarding the interconnect as a dynamically
controllable network resource.

6 Conclusion and Future Work

In this paper, we have explored the feasibility of a high-speed MPI_Bcast, or
SDN_MPI_Bcast, that leverages software programmability brought by SDN for
efficient data delivery from a source process to the remained processes of the
MPI program. Evaluation shown in this paper implies that SDN_MPI_Bcast is
superior to MPI_Bcast by measuring the execution times of both regarding data
size and the number of processes changed. From the result, we believe the use of
SDN might be a possible and feasible solution for reducing the execution time of
MPI_Bcast. At the same time, through this preliminary study, we now recognize
many issues to be tackled to realize a practical SDN_MPI_Bcast. As described
in Section 3.1, we have assumed for simplification that only one process runs
on a computing node. However, multiple MPI processes, each of which belongs
to a different MPI job, run on a computing node in the usual cases. Although
our proposed method allows us to distinguish network flows derived from a MPI
job from others, the separation of MPI job groups on a contended environment
remains an issue. Finally, how to deal with packet loss should also be considered.
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PPAM 2005. LNCS, vol. 3911, pp. 228–239. Springer, Heidelberg (2006)

4. Rabenseifner, R.: Automatic MPI Counter Profiling of All Users: First Results
on a CRAY T3E 900-512. In: Proceedings of the 3rd Message Passing Interface
Developer’s and User’s Conference (MPIDC 1999), pp. 77–85 (March 1999)

5. Rabenseifner, R.: Optimization of Collective Reduction Operations. In: Bubak, M.,
van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036,
pp. 1–9. Springer, Heidelberg (2004)

6. Open Network Foundation: Software-Defined Network, The New Norm for Net-
works, White Paper (April 2012)

7. Nascimento, M.R., Rothenberg, C.E., Salvador, M.R., Corrêa, C.N.A., de Lucena,
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