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Abstract. The operation of a novel unified memory device using two floating-
gates is described through experimental characterization of a fabricated proof-
of-concept device and confirmed through simulation. The dynamic, nonvolatile, 
and concurrent modes of the device are described in detail. Simulations show 
that the device compares favorably to conventional memory devices. 
Applications enabled by this unified memory device are discussed, highlighting 
the dramatic impact this device could have on next generation memory 
architectures. 
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1 Introduction 

This chapter is in part based off previously published work on the demonstration of a 
novel double floating-gate unified memory device [1]. In this paper, that work is 
extended through device simulations and additional details on the fabrication, 
operation, and design of circuits based on such a device. Such a unified memory 
device could store both volatile (dynamic) and nonvolatile states simultaneously. This 
could have a dramatic impact on traditional memory hierarchies [2-4]. For example, 
the data stored in the nonvolatile mode of the device when the computer is powered 
down could quickly be written to the dynamic state when the power is turned on, 
allowing for instant-on computing. This data transfer could also operate in reverse as 
dynamic data could be written to nonvolatile states to allow for full or partial 
hibernation of the memory fabric. Alternatively, writing dynamic data quickly to 
nonvolatile data could enable fast in-situ checkpointing. Finally, there are a number of 
novel logic applications for such a device that could impact numerous areas of 
computation [4]. 

Two floating-gates (FGs) have been used previously for enhancing memory operation 
[5-8]. However, these designs typically have been used in an effort to increase the 
memory window and data retention compared to single FG devices. For example, the 
size of the nanocrystals in the two FG layers can be engineered to exploit the Coulomb 
Blockade effect [8]. In this research, however, two FGs are used to enable a device which 
can store both dynamic and nonvolatile states concurrently. The two modes of operation 
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Table 1. Device Model Properties 

Layer Material Thickness 
Control Gate Molybdenum 10 nm 

Control Dielectric HfO2 18 nm 
Top FG Platinum 3 nm 

Inter-FG Dielectric HfSiO 3.2 nm 
Bottom FG Magnesium 3 nm 

Gate Dielectric SiO2 4 nm 
Substrate Bulk Si - 

 
This model is used to confirm the characterized device operation and is the link 

between the proof-of-concept structure and the circuit simulations discussed in 
Section 6. In addition to more aggressive thickness scaling, some important material 
distinctions can be made between the fabricated device and the simulated device. In 
contrast to the fabricated device, different materials were chosen for the two FGs, 
creating an asymmetry across the inter-FG dielectric, as can be seen in the energy 
band diagrams for the simulated and fabricated devices shown in Fig. 2. A high work 
function metal, Pt, was used for the top FG, whereas a low work function metal, Mg, 
was used for the bottom FG. This results in fast dynamic programming as electrons 
tunnel from the bottom FG to the top FG relatively easily. Once trapped, the deep 
potential well of the top FG sustains sufficiently long retention times but comes at the 
expense of dynamic erasing, as will be shown later in the circuit simulations. The 
characterization and operation of this device is discussed in the following sections, 
starting with the dynamic mode. 

 

Fig. 2. The energy band diagrams of the (a) simulated and (b) fabricated devices 



220 N. Di Spigna et al. 

3 Dynamic Mode 

The mode of the device 
relatively small bias an
programmed/erased. The dy
device is swept from a ne
the negative voltage. Initia
the control gate, electrons 
charge on the top FG, as pi
the bottom FG, closer to the
to the right, as can be seen 
As the sweep continues, th
opposite charge condition 
positive charge closer to t
positive charge closer to th
to the left, once again dem
dynamic operation, the hys
direction anticipated for tra
operation, the voltage appl
from the substrate, but rath
the FGs across the relativel
the charge on the FGs. Thi
the device. 

 
 
 

Operation 

is determined by the applied voltage envelope. Fo
nd short duration, the device’s dynamic mode 
ynamic operation of the device is illustrated in Fig. 3. T
egative voltage, to a positive voltage, and then back

ally, as the device has a small negative voltage applied
will move to the bottom FG leaving behind a posit

ictured on the right-side of Fig. 3. The negative charge
e substrate, will cause a slight shift of the flat-band volt
in the measured CV characteristic of the fabricated dev
he voltage applied to the gate becomes positive, and 
results. Electrons now move to the top FG resulting i

the substrate, as pictured on the left-side of Fig. 3. T
e substrate will cause a slight shift of the flat-band volt
monstrated by the measured CV characteristic. Thus, 
steresis is counter-clockwise, which would be the oppo
aditional single FG devices. Notice that for dynamic m
lied to the control gate is insufficient to draw up cha
her is only strong enough to simply redistribute charge
ly thin inter-FG dielectric. Thus, there is no net increase
s condition is what distinguishes the mode of operation

Fig. 3. Dynamic Mode Operation 

or a 
is 

The 
k to  
d to 
tive 

e on 
tage 
vice. 

the 
in a 
This 
tage 
for 

osite 
mode 
arge 
e on 
e in 
n of 

 



 Simulation and Exp

The flat-band voltage sh
envelope is shown in Fig. 4
device, there is a greater p
positive voltage envelopes c
symmetry in the characteris
FGs. As shown in Fig. 2b, 
FGs such that the program a

Fig. 4

The simulations of the d
The initial uncharged devic
the control gate for 50 ns 
After about 300 ms, the th
initial state of the device 
difference is needed to dis
required. A 5 V refresh pul
fully decayed back to the i
40 ns, rather than the initial
can be seen in Fig. 5a, th
threshold voltage (4). This v
300 ms to retain the charge
device.  

erimental Characterization of a Unified Memory Device 

hift of the fabricated device relative to the applied volt
4. As greater negative voltage envelopes are applied to 
positive shift in the flat-band voltage; whereas increas
causes a greater negative shift in the flat-band voltage. T
stics is indicative of the use of the same metal for the t
this results in a symmetric energy barrier between the t
and erase characteristics are also symmetric. 

 

. Dynamic Program/Erase Characteristics 

dynamic mode operation of the device are shown in Fig
ce characteristics are shown (1). A 5 V pulse is applied
causing the threshold voltage to shift about -330 mV 
hreshold voltage decays about 220 mV back towards 
(3). For these simulations, it is assumed that a 100 m

stinguish between the two distinct states, thus a refresh
lse is applied to the control gate. Since the device has 
initial state, this refresh pulse only needs to be applied 
l 50 ns applied to redistribute charge in the fresh device.
his refresh returns the device back to the charged s
volatile cycle continues, requiring a refresh period of ab
ed state, and thus demonstrating the dynamic mode of 

221 

tage 
the 

sing 
The 
two 
two 

g. 5. 
d to 
(2). 
the 

mV 
h is 
not 
for 

. As 
tate 

bout 
the 



222 N. Di Spigna et al. 
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To dynamically program a target device, 3 V is placed on the appropriate WL and -
2 V is placed on the appropriate SL. This results in a 5 V bias across its gate stack, 
which when applied for 50 ns results in the target device being dynamically 
programmed, as previously described in the device simulation. However, to prevent 
inadvertent programming of non-target devices on that WL, the non-target SLs need 
to be biased to 2 V such that there is only a 1 V bias across their gate stack. This 
represents the dynamic retain condition. 

As previously discussed, the device was engineered to have a low work function 
metal for the bottom FG and a high work function metal for the top FG. This resulted 
in an asymmetric barrier that allowed for fast dynamic programming and increased 
dynamic retention as charge tunneled easily from the bottom FG into the deeper 
energy well of the top FG, as shown in Fig. 2a. This resulted in a dynamic retention of 
300 ms. However, this came at the expense of the dynamic erase; which as shown in 
Table 2 takes 10 μs. This is much longer than conventional DRAM. If, on the other 
hand, the materials are chosen to be symmetric, as was the case for the fabricated 
device in which palladium was used for both the top and bottom FGs, the dynamic 
erase time would reduce to 200 ns. Of course with a symmetric barrier, there is no 
longer the deeper potential well for the charge in the dynamically programmed state 
and so the retention time would also be reduced. However, for this device the 
retention time would only reduce from 300 ms to 100 ms, which could prove a wise 
tradeoff for reducing the dynamic erase time from 10 μs to 200 ns. Certainly further 
work function engineering can be performed to tailor the device performance towards 
target applications.  

Another advantage of the device is that it operates more like an SRAM than a 
DRAM, and thus the read operation takes only 2.2 ns, which is much faster than 
DRAM. The read is also nondestructive, unlike DRAM. The memory array should 
also have a higher density than DRAM due to the difficulty of scaling the DRAM 
capacitor and maintaining sufficient charge sharing with the bitline. This device is 
scalable, in bulk form, to at least the 16-nm node. Through stacking, it has the 
potential to reach densities equivalent to the 8-nm node. 

Overall, the device offers several advantages compared to conventional DRAM 
[3]. However, such a comparison is ill-conceived. The device may not be wholly 
superior to DRAM, nor to a similarly scaled single FG nonvolatile device, since it 
requires an extra FG and the addition of an ultra-thin inter-FG dielectric layer; but the 
device offers a tremendous advantage that neither of the other devices do singularly; it 
can store both dynamic (DRAM) and nonvolatile (FLASH) states concurrently. Such 
a unified memory device has enormous potential to impact next generation memory 
architectures. 

7 Applications 

There are a number of applications for such a unified memory device. For example, 
the device could be used to enable instant-on computing. The computer could quickly 
be powered down by simply moving all of the dynamic states into their nonvolatile 
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states. If the entire memory array is written to its nonvolatile state in parallel, this 
would take only about 30 ms. When the user wants to power the computer back on, 
the memory controller simply needs to write back all of the nonvolatile data into the 
dynamic state. Once again, when performed in parallel, this would take only about 14 
ms. In theory, the user could power up and power down the computer in only a 
fraction of a second. Beyond user convenience, this could allow for the operating 
system to power down during moments of inactivity. For example, if the user walked 
away from their computer to get a drink or take a phone call, the operating system 
could power down and conserve battery life. When the user returned, the power up 
penalty would only be a fraction of a second.  

This device could also enable partial hibernation. For parts of the memory that are 
not currently being used, those arrays could be written to the nonvolatile state in the 
background as the user continues to operate their computer. This could enable a 
flexible memory fabric that could be selectively powered down which could have a 
significant impact on energy-proportional computing. An example application for this 
would be Google servers. Recently, a study on their server power usage showed that 
at utilization workloads that were common (20-30%), the servers operated at less than 
half their peak energy efficiency performance [10]. Given the nature of their 
utilization, current solutions to transfer to inactive modes are impractical because of 
both a time latency and energy penalty. The device described in this chapter could 
make such transitions practical by significantly reducing the wake-up penalties. 
Alternatively, partial hibernation enabled by this device could be used to further 
enhance active energy-saving schemes. 

Another example application in which these devices could be beneficial is in-situ 
checkpointing. The device could be running continuously in dynamic mode, and then 
upon desire for a check-point, the entire memory array could be quickly written to the 
nonvolatile state in only about 30 ms. This would be much more efficient than writing 
through narrow channels to disk. Thus, more check-points could be efficiently taken, 
improving the resiliency of the computer. Upon detection of an error, the correct state 
could be recovered much faster than traditional memory hierarchies would permit. 
Instant-on computers, energy-proportional computing, and in-situ checkpointing are 
just a few examples of the potential that could be realized with a memory array 
composed of this new unified memory device. 

8 Conclusion 

New unified memory devices using two FGs were modeled, simulated, fabricated and 
characterized. The operation of the devices in dynamic, nonvolatile, and concurrent 
modes were demonstrated in proof-of-concept MOSCAPs and confirmed through 
device simulations. The programming, retention, and endurance characteristics were 
demonstrated for the different modes. A memory array based on these devices was 
designed and simulated. It was shown that these devices compare favorably to both 
conventional DRAM and FLASH devices. However, the true potential of these 
devices is not in their use as either a DRAM or FLASH replacement, but rather as a 
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new unified memory device that can store both dynamic and nonvolatile states 
concurrently. Applications for such a device were discussed that highlight the 
significant impact this device could have on next generation memory architectures.  
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