Skip to main content

Learning from Demonstration (Programming by Demonstration)

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Behavioral cloning; Inverse optimal control; Imitation learning

Definition

Learning from demonstration (LfD), also called programming by demonstration (PbD), refers to the process used to transfer new skills to a machine by relying on demonstrations from a user. It is inspired by the imitation capability developed by humans and animals to acquire new skills. LfD aims at making programming accessible to novice users by providing them with an intuitive interface they are familiar with, as humans already exchange knowledge in this way.

Overview

In robotics, LfD appeared as a way to reprogram a robot without having to rely on a computer language or a complex interface. It instead introduces more intuitive skill transfer interactions with the robot (Billard et al., 2016; Argall et al., 2009). The goal is to provide user-friendly interfaces that do not require knowledge in computer programming or robotics. LfD can be considered at various levels, from the transfer of low-level...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

    Article  Google Scholar 

  • Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5(7):1–27

    Article  MathSciNet  Google Scholar 

  • Billard AG, Calinon S, Dillmann R (2016) Learning from humans, chapter 74. In: Siciliano B, Khatib O (eds) Handbook of robotics, 2nd edn. Springer, Secaucus, pp 1995–2014

    Chapter  Google Scholar 

  • Bruno D, Calinon S, Caldwell DG (2017) Learning autonomous behaviours for the body of a flexible surgical robot. Auton Robot 41(2):333–347

    Article  Google Scholar 

  • Cakmak M, DePalma N, Arriaga RI, Thomaz AL (2010) Exploiting social partners in robot learning. Auton Robot 29(3–4):309–329

    Article  Google Scholar 

  • Calinon S (2016) A tutorial on task-parameterized movement learning and retrieval. Intell Serv Robot 9(1):1–29

    Article  Google Scholar 

  • Calinon S, Alizadeh T, Caldwell DG (2013) On improving the extrapolation capability of task-parameterized movement models. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo, pp 610–616, Nov 2013

    Google Scholar 

  • Calinon S, D’halluin F, Sauser EL, Caldwell DG, Billard AG (2010) Learning and reproduction of gestures by imitation: an approach based on hidden Markov model and Gaussian mixture regression. IEEE Robot Autom Mag 17(2):44–54

    Google Scholar 

  • Calinon S, Lee D (2018, in press) Learning control. In: Vadakkepat P, Goswami A (eds) Humanoid robotics: a reference. Springer. https://doi.org/10.1007/978-94-007-7194-9_68-2

  • Calinon S, Li Z, Alizadeh T, Tsagarakis NG, Caldwell DG (2012) Statistical dynamical systems for skills acquisition in humanoids. In: Proceedings of IEEE international conference on humanoid robots (Humanoids), Osaka, pp 323–329

    Google Scholar 

  • Canal G, Alenyà G, Torras C (2016) Personalization framework for adaptive robotic feeding assistance. In: Proceedings of international conference on social robotics (ICSR), Kansas City, pp 22–31, Nov 2016

    Chapter  Google Scholar 

  • Chen J, Lau HYK, Xu W, Ren H (2016) Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning. In: Proceedings of international conference on advanced computational intelligence, pp 378–384, Feb 2016

    Google Scholar 

  • Coates A, Abbeel P, Ng AY (2009) Apprenticeship learning for helicopter control. Commun ACM 52(7): 97–105

    Article  Google Scholar 

  • Evrard P, Gribovskaya E, Calinon S, Billard AG, Kheddar A (2009) Teaching physical collaborative tasks: object-lifting case study with a humanoid. In: Proceedings of IEEE international conference on humanoid robots (Humanoids), Paris, pp 399–404, Dec 2009

    Google Scholar 

  • Hamaya M, Matsubara T, Noda T, Teramae T, Morimoto J (2017) Learning assistive strategies for exoskeleton robots from user-robot physical interaction. Pattern Recogn Lett 99:67–76

    Article  Google Scholar 

  • Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013) Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput 25(2):328–373

    Article  MathSciNet  Google Scholar 

  • Kelso JAS (2009) Synergies: atoms of brain and behavior. In: Sternad D (ed) Progress in motor control. Advances in experimental medicine and biology, vol 629. Springer, New York/London, pp 83–91

    Chapter  Google Scholar 

  • Khansari-Zadeh SM, Billard A (2011) Learning stable non-linear dynamical systems with Gaussian mixture models. IEEE Trans Robot 27(5):943–957

    Article  Google Scholar 

  • Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg K (2015) Unsupervised surgical task segmentation with milestone learning. In: Proceedings of international symposium on robotics research (ISRR)

    Google Scholar 

  • Kulic D, Takano W, Nakamura Y (2008) Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. Int J Robot Res 27(7):761–784

    Article  Google Scholar 

  • Lee D, Ott C (2011) Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Auton Robot 31(2):115–131

    Article  Google Scholar 

  • Lee D, Ott C, Nakamura Y (2010) Mimetic communication model with compliant physical contact in human-humanoid interaction. Int J Robot Res 29(13): 1684–1704

    Article  Google Scholar 

  • Lee SH, Suh IH, Calinon S, Johansson R (2012) Learning basis skills by autonomous segmentation of humanoid motion trajectories. In: Proceedings of IEEE international conference on humanoid robots (Humanoids), Osaka, pp 112–119

    Google Scholar 

  • Liu W, Dai B, Humayun A, Tay C, Yu C, Smith LB, Rehg JM, Song L (2017) Iterative machine teaching. In: Proceedings of international conference on machine learning (ICML), Sydney, Aug 2017

    Google Scholar 

  • Maeda GJ, Neumann G, Ewerton M, Lioutikov R, Kroemer O, Peters J (2017) Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks. Auton Robot 41(3):593–612

    Article  Google Scholar 

  • Mühlig M, Gienger M, Steil J (2012) Interactive imitation learning of object movement skills. Auton Robot 32(2):97–114

    Article  Google Scholar 

  • Nakanishi J, Morimoto J, Endo G, Cheng G, Schaal S, Kawato M (2004) Learning from demonstration and adaptation of biped locomotion. Robot Auton Syst 47(2–3):79–91

    Article  Google Scholar 

  • Nehaniv CL, Dautenhahn K (2002) The correspondence problem. In: Dautenhahn K, Nehaniv CL (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 41–61

    Google Scholar 

  • Nehaniv CL, Dautenhahn K (eds) (2007) Imitation and social learning in robots, humans, and animals: behavioural, social and communicative dimensions. Cambridge University Press, Cambridge

    Google Scholar 

  • Neumann K, Steil JJ (2015) Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robot Auton Syst 70:1–15

    Article  Google Scholar 

  • Niekum S, Osentoski S, Konidaris G, Chitta S, Marthi B, Barto AG (2015) Learning grounded finite-state representations from unstructured demonstrations. Int J Robot Res 34(2):131–157

    Article  Google Scholar 

  • Padoy N, Hager GD (2011) Human-machine collaborative surgery using learned models. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 5285–5292, May 2011

    Google Scholar 

  • Paraschos A, Daniel C, Peters J, Neumann G (2013) Probabilistic movement primitives. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems (NIPS). Curran Associates, Inc., Red Hook, pp 2616–2624

    Google Scholar 

  • Perrin N, Schlehuber-Caissier P (2016) Fast diffeomorphic matching to learn globally asymptotically stable nonlinear dynamical systems. Syst Control Lett 96: 51–59

    Article  MathSciNet  Google Scholar 

  • Pignat E, Calinon S (2017) Learning adaptive dressing assistance from human demonstration. Robot Auton Syst 93:61–75

    Article  Google Scholar 

  • Ratliff N, Ziebart BD, Peterson K, Bagnell JA, Hebert M, Dey A, Srinivasa S (2009) Inverse optimal heuristic control for imitation learning. In: International conference on artificial intelligence and statistics (AIStats), pp 424–431, Apr 2009

    Google Scholar 

  • Reiley CE, Plaku E, Hager GD (2010) Motion generation of robotic surgical tasks: learning from expert demonstrations. In: International conference on IEEE engineering in medicine and biology society (EMBC), pp 967–970

    Google Scholar 

  • Rozo L, Calinon S, Caldwell DG, Jimenez P, Torras C (2016) Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans Robot 32(3):513–527

    Article  Google Scholar 

  • Rueckert E, Mundo J, Paraschos A, Peters J, Neumann G (2015) Extracting low-dimensional control variables for movement primitives. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Seattle, pp 1511–1518

    Google Scholar 

  • Savarimuthu TR, Buch AG, Schlette C, Wantia N, Rossmann J, Martinez D, Alenya G, Torras C, Ude A, Nemec B, Kramberger A, Worgotter F, Aksoy EE, Papon J, Haller S, Piater J, Kruger N (2018) Teaching a robot the semantics of assembly tasks. IEEE Trans Syst Man Cybernet Syst 48(5):670–692

    Article  Google Scholar 

  • Soh H, Demiris Y (2015) Learning assistance by demonstration: smart mobility with shared control and paired haptic controllers. J Hum Robot Interaction 4(3): 76–100

    Article  Google Scholar 

  • Sternad D, Park S-W, Mueller H, Hogan N (2010) Coordinate dependence of variability analysis. PLoS Comput Biol 6(4):1–16

    Article  Google Scholar 

  • Todorov E, Jordan MI (2002) A minimal intervention principle for coordinated movement. In: Advances in neural information processing systems (NIPS), pp 27–34

    Google Scholar 

  • Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans Robot 26(5):800–815

    Article  Google Scholar 

  • Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM (2009) Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philos Trans R Soc B 364(1528):2417–2428

    Article  Google Scholar 

  • Yang T, Chui CK, Liu J, Huang W, Su Y, Chang SKY (2014) Robotic learning of motion using demonstrations and statistical models for surgical simulation. Int J Comput Assist Radiol Surg 9(5):813–823

    Article  Google Scholar 

  • Zeestraten MJA, Calinon S, Caldwell DG (2016) Variable duration movement encoding with minimal intervention control. In: Proceedings of IEEE international conference on robotics and automation (ICRA), May 2016, Stockholm, pp 497–503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Calinon .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calinon, S. (2018). Learning from Demonstration (Programming by Demonstration). In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_27-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics