Skip to main content

Efficiency of Traction Power Conversion Based on Crosswind Motion

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This review paper is devoted to analytical modeling of the so-called kite wind generator (KWG) whose power conversion operation uses a tethered kite to mechanically drive a groundbased electric generator. An important aspect of the KWG operating principle is the controlled crosswind motion of the kite, which is used to increase the kite traction force. A simple mathematical model for steady crosswind motion of the tethered kite is formulated on the basis of the refined crosswind motion law. An analytical approximation for the mean mechanical power output is presented in terms of the performance coefficient of the pumping kite wind generator. Optimal control of the tether length rate is considered for the open-loop and closed-loop figure-of-eight trajectories. The influence of the kite control and of the tether sag on the kite traction power output is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argatov, I., Silvennoinen, R.: Asymptotic modeling of unconstrained control of a tethered power kite moving along a given closed-loop spherical trajectory. Journal of Engineering Mathematics 72(1), 187–203 (2012). doi: 10.1007/s10665-011-9475-3

    Google Scholar 

  2. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Apparent wind load effects on the tether of a kite power generator. Journal ofWind Engineering and Industrial Aerodynamics 99(5), 1079– 1088 (2011). doi: 10.1016/j.jweia.2011.07.010

    Google Scholar 

  3. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). doi: 10.1016/j.renene. 2008.11.001

    Google Scholar 

  4. Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010). doi: 10.1016/j.renene.2009.09.006

    Google Scholar 

  5. Argatov, I., Silvennoinen, R.: Structural optimization of the pumping kite wind generator. Structural Multidiscplinary Optimization 40(1–6), 585–595 (2010). doi: 10. 1007/s00158 - 009-0391-3

    Google Scholar 

  6. Canale, M., Fagiano, L., Milanese, M.: KiteGen: A revolution in wind energy generation. Energy 34(2), 355–361 (2009). doi: 10.1016/j.energy.2008.10.003

    Google Scholar 

  7. Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation - fast predictive control of tethered airfoils. IEEE Control Systems Magazine 27(6), 25–38 (2007). doi: 10. 1109/MCS.2007.909465

    Google Scholar 

  8. Chen,W. F., Lui, E. M. (eds.): Handbook of Structural Engineering. 2nd ed. CRC Press, Boca Raton (2005)

    Google Scholar 

  9. Diehl, M.: Real-time optimization for large scale nonlinear processes. Ph.D. Thesis, University of Heidelberg, 2001. http://archiv.ub.uni-heidelberg.de/volltextserver/1659/

  10. Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http ://lorenzofagiano. altervista. org/docs/PhD thesis Fagiano Final.pdf

    Google Scholar 

  11. Hobbs, S. E.: A Quantitative Study of Kite Performance in Natural Wind with Application to Kite Anemometry. Ph.D. Thesis, Cranfield University, 1986. https://dspace.lib.cranfield.ac. uk/bitstream/1826/918/2/sehphd2a.pdf

  12. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007. http://www.kuleuven.be/optec/files/Houska2007.pdf

  13. Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi: 10.1109/CDC.2006.377210

  14. Ilzh¨ofer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites uner varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). doi: 10.1002/rnc.1210

  15. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021

    Google Scholar 

  16. Macdonald, J. H. G., Larose, G. L.: A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping. Journal Fluids Struct. 22(2), 229–252 (2006). doi: 10.1016/j.jfluidstructs.2005.10.002

    Google Scholar 

  17. Roberts, B. W., Shepard, D. H., Caldeira, K., Cannon, M. E., Eccles, D. G., Grenier, A. J., Freidin, J. F.: Harnessing High-Altitude Wind Power. IEEE Transaction on Energy Conversion 22(1), 136–144 (2007). doi: 10.1109/TEC.2006.889603

  18. Varma, S. K., Goela, J. S.: Effect of wind loading on the design of a kite tether. Journal of Energy 6(5), 342–343 (1982). doi: 10.2514/3.48051

    Google Scholar 

  19. Wellicome, J. F.: Some comments on the relative merits of various wind propulsion devices. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 111–142 (1985). doi: 10.1016/0167-6105(85)90015-7

    Google Scholar 

  20. Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008). doi: 10.2514/1.31604

  21. Williams, P.: Optimal wind power extraction with a tethered kite. AIAA Paper 2006-6193. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, USA, 21–24 Aug 2006. doi: 10.2514/6.2006-6193

  22. Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). doi: 10.2514/1.30089

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Argatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Argatov, I., Silvennoinen, R. (2013). Efficiency of Traction Power Conversion Based on Crosswind Motion. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics