Efficient Robust Monitoring for STL

Alexandre Donzé!, Thomas Ferrére?, and Oded Maler?

! University of California, Berkeley, EECS Dept.
donze@eecs.berkeley.edu
2 Verimag, CNRS and Grenoble University
{maler,ferrere}@imag.fr

Abstract. Monitoring transient behaviors of real-time systems plays an
important role in model-based systems design. Signal Temporal Logic
(STL) emerges as a convenient and powerful formalism for continu-
ous and hybrid systems. This paper presents an efficient algorithm for
computing the robustness degree in which a piecewise-continuous signal
satisfies or violates an STL formula. The algorithm, by leveraging state-
of-the-art streaming algorithms from Signal Processing, is linear in the
size of the signal and its implementation in the Breach tool is shown to
outperform alternative implementations.

1 Introduction

Temporal Logic (TL) is a popular formalism, introduced into systems design
[Pnu77] as a language for specifying acceptable behaviors of reactive systems.
Traditionally, it has been used for formal verification, either by deductive meth-
ods [MP91l, MP95], or algorithmic methods (model checking [CGP99, [QS82]).
In this framework, the behaviors in question are typically discrete, that is, se-
quences of states and/or events. Two other assumptions concerning this use of
TL in verification are implicit:

1. Systems correctness is affirmed if all system behaviors satisfy the specifica-
tion. Thus model checking is based on composing the system model with
an automaton for the specification and analyzing all possible paths in the
combined transition system;

2. The satisfaction of a property by a behavior is a purely discrete matter
(yes/no), which is in the spirit of most logics

In recent years, several trends suggest alternative ways to use TL in the design
of complex systems and also during their operations. The first trend is due to the
state-explosion wall, which limits the size of systems that can be verified (not
to mention systems like programs with numerical variables or hybrid systems
where verification is not even decidable). As a result we can see a proliferation of
statistical methods a-la Monte-Carlo, where universal quantification is replaced

! There are some branches of multi-valued logic such as Fuzzy [Zad65] and probabilistic
[NiI86] but mainstream Logic is about true and false.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 264-E79] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Efficient Robust Monitoring for STL 265

by random simulation, with and even without statistical coverage guarantees.
In this framework, also known as runtime wverification, assertion checking or
monitoring, the temporal formula is still used for a rigorous specification of the
requirements, but unlike model-checking, it is evaluated on a single behavior at
a time, a much easier task.

Unlike formal verification, monitoring does not require a model of the sys-
tem. All it needs is a process that generates observable behaviors. As such it
can be applied to systems which are viewed as black bozes either because their
developers want to protect their intellectual property or because it is a complex
program without a decent and tractable formal model. For the same reason,
temporal property checking can be integrated in monitoring and diagnostics of
real systems during their operation and provide more refined means to define
and detect hazardous situations.

The present paper is based on signal temporal logic (STL), a formalism for
specifying properties of dense-time real-valued signals [MN04, MNPOS§]|, for which
a monitoring tool called AMT [NMOQ7] has been developed and used in the
context of analog and mixed-signal circuits [JKNI0, [MN12]. In many real-life
applications, especially when dealing with continuous dynamics and numerical
quantities, yes/no answers provide only partial information and could be aug-
mented with quantitative information about the satisfaction to provide a better
basis for decision making. To illustrate, consider the formula = < ¢ for constant
c and a real-valued variable z ranging over some domain X. The formula splits
X into X = {z:2 > c} and X' = {& : x < c}. The latter is called the validity
domain of the formula. When we pick a number x € X, the answer to the sat-
isfaction query = = x < ¢ depends on the membership of x in X! but not on its
relative position inside or outside X'. The robustness degree of the satisfaction
should tell us whether x satisfies the formula by far (x < ¢) or very marginally
(x = ¢ — € for a small positive €). For this example, the robustness degree is
captured by ¢ — 2 whose sign indicates satisfaction/violation and its magnitude
indicates the distance between = and the boundary between X° and X*.

Such notions have been introduced into TL by Fainekos and Pappas [FP09]
for STL and by Fages and Rizk [RBFS08] for LTL over real-valued sequences.
The robustness information is useful to assess the severity of a detected malfunc-
tioning in a working system. It can also increase the confidence in the results
of incomplete-coverage validation techniques, if it so happens that all sampled
behaviors satisfy the requirements robustly. In a previous paper [DMI10] we have
introduced notions of robustness both in space and time, and provided an al-
gorithm for computing the robustness degree with respect to a given signal.
Signals are represented as sequences of time-stamped points and are interpreted
as piecewise-linear via interpolation.

The major contribution of this paper is a new optimal algorithm that com-
putes the robustness degree for such a signal in time linear with respect to the
size of the signal (number of points). This algorithm guarantees that the over-
head added by monitoring to the simulation process is acceptable, thus making

266 A. Donzé, T. Ferrére, and O. Maler

robustness-based monitoring a feasible technology that can be used routinely as
an add-on for simulation engines. This low complexity is due to two key ideas:

— The use of the optimal streaming algorithm of Daniel Lemire [Lem06] to
compute the min and max of a numeric sequence over a sliding window;

— The rewriting of the (bounded) timed “until” operator [DT04] as a conjunc-
tion of simpler timed and untimed operators.

The algorithm has been implemented at the core of Breach [DonI0] which is
a highly versatile toolbox for simulation-based analysis of complex systems, re-
cently applied to biological reaction networks [DFGT11, [MDMFE12], to mine
requirements of Simulink models in the automative industry [JDDSI3] and to
characterize patterns in musical signals [DMB™12]. Our implementation outper-
forms the tool S-TaLiRo [ALESTI], to the best of our knowledge the only other
tool implementing quantitative semantics for dense time.

The rest of the paper is organized as follows. In Section 2], we recall the main
definitions of STL and its quantitative semantics. In Section @ we present our
robustness computation framework and describe the algorithms for simple op-
erators, such as negation and conjunction. Section M treats in details the case of
untimed until and timed eventually, which completes the algorithms presenta-
tion. SectionBldiscusses the theoretical worst-case complexity of the computation
and Section [provides experimental results.

2 Signal Temporal Logic

In this section we recall the framework set in [MNO4] to specify properties of
real-valued signals, we extend it to a multi-valued logic as proposed by [FP09],
and present the main properties of this extension.

We adopt the following conventions. The set of Boolean values is taken as
B:={L, T} with L < T, =T = L and —L = T, inducing the well known
algebra. We write R := R UB for the totally ordered set of real numbers with
smallest element | and greatest element T.

A signal will be a function D — E, with D an interval of RT and E C
R. Signals with £ = B are called Boolean signals, whereas those where E =
R are real-valued signals. An execution trace w is a set of real-valued signals
{z¥,...,x}'} defined over some interval D of RT, which is called the time domain
of w. Such a trace can be “booleanized” through a set of threshold predicates@
of the form z; > 0. Signal Temporal Logic is then a simple extension of Metric
Temporal Logic where real-valued variables (z;);cn are transformed into Boolean
values via these predicates. The syntax of STL will be taken as follows:

pi=true |z; 20 ¢ |oAp|eUrep

Here z; are variables, and I is a closed, non-singular interval of R™. This includes
bounded intervals [a, b] and unbounded intervals [a, +00) for any 0 < a < b.

2 More expressive predicates could be added in the form of a preprocessing step, which
we do not include explicitely in our framework.

Efficient Robust Monitoring for STL 267

Let w be a trace of time domain D. The formula ¢ is said to be defined
over a time interval dom(p,w) given by the following rules: dom(true,w) =
dom(z; > 0,w) = D, dom(—p,w) = dom(yp,w), dom(p A ¢,w) = dom(p,w) N
dom(vp,w), dom(pUry,w)={t € R |t t+inf(]) € dom(p,w) and t+inf(I) €
dom(, w)}.

Boolean Semantics. For a trace w, the validity of an STL formula ¢ at a
given time ¢ € dom(p,w) is set according to the following inductive definition.

w,t E true
witEx; >0 iff z¥(t) >0
w,tF @ iff w,tkEp

w,tE ANy iff wtEpand w,tFEY
w,t EUry iff existst’ € t+ I s.t. w,t’ E and for all ¢t € [¢, '] ,w,t" E ¢

We can redefine other usual operators as syntactic abbreviations:

false := —true eV =a(-p A1)
Orp:=trueUsp Or ¢ := =01

We use ¢ and U as shorthands for untimed operators Qo 400y and Ujg o) -
For a given formula ¢ and execution trace w, we define the satisfaction signal
x(p,w,.) as follows:

Tifw,tEp

for all t € dom(p,w), x(p,w,t):= {L otherwise

Monitoring the satisfaction of a formula ¢ can be done by computing for each
subformula ¢ of ¢ the entire satisfaction signal x(1,w,.). The procedure is
recursive on the structure of the formula, and goes from the atomic predicates
up to the top formula [MNO4].

Quantitative Semantics. Given a formula ¢, trace w, and time ¢t € dom(p, w),
we define the quantitative semantics p(¢, w, t) by induction as follows:

p(true, w, t)
plzi = 0,w,t) ()
p(—p, w,t) = —p(w,w t)
)
)=

ple A, w,t) = min{p(p, w, t), p(th, w, t)}

plpUr,w,t sup min{p(y, w, '), t”ll[ltft/] plo,w, t")}
Tifa¥(t) >0
1 otherwise

to x the above inductive rules, we fall back to Boolean signals and obtain an
equivalent characterization of x. In the quantitative semantics however, atomic
predicates z; > 0 do not evaluate to T or L but give a real value representing the

It is worth noting that if we let x(z; > 0,w,t) = and apply

268 A. Donzé, T. Ferrére, and O. Maler

distance to satisfaction or to violation, which is then propagated in the formula
using the {min, max, —} operations on R.

From the lattice properties of (R, <), we are granted the axioms of associa-
tivity, commutativity, neutral element, and distributivity. The minus function
remains involutive, which gives us the usual de Morgan laws =(¢ V1)) ~ = A—t)
and =0y¢ ~ Oj—p. Derived operators enjoy the same natural interpreta-
tion as in the Boolean semantics: p(p V 1, w,t) = max{p(p, w,t), p(, w,t)},

p(Or o, w,t) = sup p(p,w,t’), and p(O; p,w,t) = inf p(e,w,t’).
t'et+l tret+l

Property of Robustness Estimate. The quantitative semantics of STL have
two fundamental properties, that would alone justify their introduction. Firstly,
whenever p(p,w,t) # 0 its sign indicates the satisfaction status.

Theorem 1 (Soundness). Let ¢ be an STL formula, w a trace and t a time.

plp,w,t) > 0= w,tFp
plp,w,t) <0=w,tF g

Secondly, if w satisfies ¢ at time ¢, any other trace w’ whose pointwise distance
from w is smaller than p(p,w,t) also satisfies ¢ at time ¢.

Theorem 2 (Correctness). Let ¢ be an STL formula, w and w' traces over
the same time domain, and t € dom(p, w).

w,tEpand |lw—uww < plp,w,t) = w, tEp

On these grounds we now talk of p as the robustness estimate. For a given trace
w, and ¢ an STL formula, we will refer to the robustness signal of ¢ with respect
to w, as the signal p(p, w,.). Similarly to the satisfaction signal, it is defined over
the time domain dom(p, w).

Until Rewrite. The properties o U, 3% ~ Qa,p) ¥ A @ Ulg,100) ¥ and
©Ulg400) ¥ ~ Ojo,a) (¢ U ¥) extend from Boolean to quantitative semantics.

Lemma 1. For two STL formula ¢,1, a trace w and any time t where defined,

P2 Ulap) ¥, w,t) = p(Oap) ¥ A ¢ Ul 00y V5w, 1) (1)
p(ﬁpU[a,Jroo) 1% w, t) = p(D[O,a] (()0 U w)a w, t) (2)

Proof. We only prove the first rewrite rule, the second can be obtained by a
similar argument. We note 3,3’ the robustness signals of ¢, relative to w.
Let u:= sup min{y'(7), inf y} and v := min{ sup ', sup min{y’(7), inf y}}
TEt+[a,b] (t,7] t+[a,b] T>tta [t,7]

be the robustness values of equation (1) for some given time t. Suppose that
u # v, for instance u < v. We define the signals « : ¢ — y(t) — “3¥ and
@'ty (t) — “%”. Now consider the formulas v := (2 > 0) Uy (2’ > 0) and
0 := Qo) (' > 0)A(x > 0) Ul 4o0) (2 > 0). Pushing the constant “}* outside
min, sup and inf in their quantiative semantics we get p(vy,w,t) = u — “;” <0
and p(0, w,t) =v — "3” > 0, so that w, t ¥ v while w,¢ F 6 by Theorem [l This
is clearly impossible, as v and 6 are equivalent in the Boolean semantics.

Efficient Robust Monitoring for STL 269

3 Computing the Robustness Estimate

While monitoring a system, real or simulated, signals are available to us as finite
timed words over the alphabet R™. We interpret these by linear interpolation.
This section presents the basic framework for computing robustness under this
hypothesis, using the following high-level procedure.

Algorithm 1. Robustness(p, w)
switch (p)
case true:
return T % a constant T signal
case x; > 0O:
return z;’
case * p1:
y := Robustness(p1, w)
return Compute(x,y)
case 1 * P2z
y := Robustness(p1, w)
y' := Robustness(p2, w)
return Compute(x,y,y’)
end switch

Definition 1. A signaly is said to be finitely piecewise-linear, continuous (f.p.l.c.
for short) if there exists a finite sequence (t;)i<n, such that:

— the definition domain of y is [to,tn,)
— for all i < ny, y is continuous at t; and affine on [t;,tiy1)

(ti)i<n, will be called the time sequence of y.

Let us note dy(t) the derivative of y at time ¢. In what follows, any signal in the
observed trace will be assumed to be f.p.l.c. Such a signal will be represented
by its sequence (t;,y(t;), dy(t:))i<n,, along with cut-off time ¢,,. As we assume
continuity, this representation is slightly redundant, but facilitates the splitting
of signals into segments. We may in addition require the limit of y at ¢, , for
which we abuse the notation and simply write y(t,,).

We will see that for every operator, the quantitative semantics preserves the
f.p.l.c. property of signals, so that we can always assume such signals as inputs of
the calculation in the inductive step. Note that continuity is clearly preserved by
the sup and inf operations. Also, no new derivative value is created in the process,
so that from a computational standpoint the overhead of handling derivatives is
compensated by the interpolation speedup.

Boolean Operators. Computing the robustness signal of ¢ from that of ¢ is
trivial. One can simply note that if the sequence (t;, y(;), dy(t;))i<n, represents

270 A. Donzé, T. Ferrére, and O. Maler

p(w,w,.) then the sequence (t;, —y(t;), —dy(t;))i<n, represents p(—p,w,.). For
conjunction, let us take y and 3’ the robustness signals of ¢ and v respectively,
producing z the robustness signal of ¢ A 1. We build the sequence (7;)i<n.
containing the sampling points of y and y’ when they are both defined, and
the points where y and 3y’ punctually intersect. Note that there are less than
ny + ny such intersections and at most n, + n, sampling points, so that we
have n, < 4 -max{n,,n, }. Now, for all i < n, we let, using the lexicographic

order . . ,
00\ (v ' ()
dz(r;) dy(r:)) "\ dy'(r:)
The resulting sequence (74, 2(r;), dz(r;))i<n, adequately represents p(p A, w,.).

Untimed Eventually . Although not primitive in the syntax, this operator is

easily computed and will be used as a subroutine for the until computation. We

take y the robustness signal of ¢, (£;)i<n, its time sequence, and z the robustness

signal z of ¢ . For any ¢ in its definition domain z(t) = sup y(t’'), and we have
>t

immediately the following property: Vs < t, z(s) = max{supy, z(t)}.

[s,t)
The step computation can be derived by applying the property at ¢t = ¢;11
the time of some sample ¢ + 1 < n,. Depending on the possible orderings of

{y(t:),y(titx1),2(t;+1)} there are four possibilities,

(tig1): Vs € [titipr), 2(s) = max{y(tis1), 2(tit1)}
y(t:) > y(tiv1) > 2(tig1) : Vs € [ti, tir1), 2(s) = y(s)
2(tiv1) > y(ti (tit1)
(ti+1)

y(ti) > 2(tita

Vs € [ti, tip1), 2(s) = 2(tit1)
Vs € [t;,t"), z(s) =y(s) and
Vs € [t*,ti+1), Z(S) = Z(ti+1)

The induction is initialized by substituting L for z(¢,,) in the property. Over
the whole signal y, each sample ¢; of y generates up to two samples in z, so that
n, <2-ny.

Until. We treat the case of timed until by rewriting it into untimed until
and timed eventually. This decomposition, due to [DT04] has been success-
fully applied to monitoring STL for the Boolean semantics. We have proved
(LemmalIl) that it also holds for the quantitative semantics. For unbounded un-
til Ulq +o0) we can use directly rewrite rule (2), whereas for bounded until we
have ¢ U 51 ¥ ~ Qa5 ¥ AD0,q) (¢ U 9) by rules (1) and (2). Globally being the
dual of eventually, it only remains to develop an algorithm for ([, with [a, b]
a non-singular interval, along with an algorithm for the untimed until. These
more involved computations are the object of the next section.

Efficient Robust Monitoring for STL 271

4 Algorithms

From a close examination of operators —, A and ¢ just achieved, we can im-
mediately derive the corresponding Compute() algorithms with time-complexity
linear in the number of samples of their input signals. By duality we also have
an algorithm for V with the same property. We now give detailed algorithms for
the remaining two operators: U, and Q4] -

For any signal y and two time instants s < t € R* we note Yi[s,¢) the restriction
of y to the time interval [s,t). The output signal z will be computed as a series
of segments z[, ;) for s, extracted from the time sequence of the input signals.

Operator U. Let y and 3’ be the robustness signals of ¢ and 1) respectively,
with (t;)i<n, and (t),<,L , their respective time sequences. The calculation out-
puts z, the robustness 51gnal of ¢ U relative to w. By definition we have
z(t) = sup min{y'(7), inf y}.
TE[t,+00) [t,7]
Similarly to the Boolean semantics [MNQ4], the computation can be done
by backward induction. Let s < t be two times in dom(p U). If we define

z¢(s) := sup min{y'(7), [inf] y}, by the general properties of sup and inf we
TE[s,t) $,T
obtain the following inductive formula:

z(s) = max {z(s), min{[isr}g y, z(t)}}

Suppose that y is affine on the interval [s, ¢].
— Ifdy(s) < 0then V7 € [s,t), [inf] y = y(7). Thus z¢(s) = sup min{y’(7),y(7)},

TE[s,t)
and z(s) = max {z(s), min{y(t), z(t)} }
— Otherwise V7 € [s,t), [inf] y = y(s). Therefore z:(s) = sup min{y'(7),y(s)} =
5T re[s t)
min{y(s),supy’}, and z(s) = max {z;(s), min{y(s), z(t)} }.

[5:%)

We let t = ¢; in the above, and compute z(s) for all s on the segment [t;, t;11). Tak-
ing the notation v for the constant signal of value v, we can now express all the
operations involved as computations previously implemented. This gives us Al-
gorithm [, written under the simplifying assumption that [to, tn,) € dom(¢y, w),
which can always be achieved by interpolation of y at t{,, ¢/ Ry and sample renum-
bering if necessary.

Lemma 2. The time-complexity of Algorithm[2is linear in max{n,, n, }.

Proof. The algorithm takes n, steps. Step ¢ computes the signal z on the interval
[ti,tir1) from partial signals yyp, 4., ,) and y Htatisn) along with two constant
signals. Each step uses algorithms linear in the size of their inputs, so that the
execution takes time linear in the sum of the size of the inputs of each step which
is at most 3 - ny, + n,. Thus the total execution time is linear in max{n,, n, }.

272 A. Donzé, T. Ferrére, and O. Maler

Algorithm 2. Compute(U ,y,y’)
zZo = 1
1i=mny —1
while 7 > 0 do
if dy(t;) <0 then
z1 := Compute(O ,y/”ti’tiﬂ))
22 := Compute(A, 21, Yjit; t;.1))
z3 := Compute(A, y(ti+1), 20)
21t5,t54,) = Compute(V, 22, 23)
else
21 = Compute(/\,y’”ti‘tiﬂ),y”tiytiﬂ))
22 := Compute(O , 21)
%3 = Compute(/\7y[[ti,ti+1)vZO)
2ty b)) = Compute(V, 22, 23)
end if
i:=1—1
zZ0 = Z(ti+1)
end while
return z

Operator (4, - Let y be the robustness signal of ¢ with respect to w, with
(ti)i<n, its time sequence. For a given I = [a,b] we want to compute the robust-

ness signal of ¢ ¢ with respect to w, defined as z : t — sup y.
t+1

Let t be a given time instant in dom (O ¢, w). Due to the f.p.l.c. hypothesis on
y, one can easily see that there exists t* € t+ I such that y(t*) = z(¢). Moreover
it is sufficient to consider candidates for the maximum in the time sequence of
y, along with £ + a and t + b. Namely

tit[lpb] y =max {y(t +a),y(t +b)} U{y(t:) [ti € t + (a,b]}

The problem of computing z is thus reduced to computing the maximum of
{y(t:) | t; € t + (a,b]} when non empty, followed by a pointwise maximum with
y(t+a), y(t+d). Intuitively, time intervals where {y(¢;) | ¢; € t+(a,b]} provide the
maximum corresponding to “plateau” phases, where the supremum is reached
at a point in the interior of the interval ¢+ I. On the other hand, intervals where
y(t + a) or y(t + b) give the maximum correspond to descending and ascending
phases, respectively.

The maximum of {y(t;) | ¢; € t+ (a,b]} can be computed by a straightforward
adaptation of the running maximum filter algorithm given by [Lem06]. This
work addresses the problem of computing, for signals over time domain N, the
maximum over a shifting window consisting of k elements. It it the first algorithm
with time complexity linear in the length of the signal and independent of the
window size k. We generalize this algorithm to the case of variable time-step.

Efficient Robust Monitoring for STL 273

The main idea is to maintain, as we increase t a set of indices M, so-called a
monotonic edge, such that

ieM iff t; et+1and forallt; >t;int+1, y(t;) <y(ts)

In particular for any given ¢, if M # 0 we have y(tminar) = max{y(t;) | t; €
t + (a,b]}. Assume M is known for a given time s, and is non empty. We begin
by finding the first ¢ > s so that a either a new point appears at ¢ + b or some
maximum candidate in M disappears at t+a, or both. We update M accordingly:
if tminam = ¢t + a we remove min M, the first index from M. Then if ¢ +b = ¢;

for a given ¢ then we compare y(t;) with y(¢) for k € M in decreasing order of
k, starting with the last candidate y(tmax). If & € M is so that t;, < t; then
ti is removed from M as outperformed by ¢;, otherwise we stop. At this point &
is inserted as the new last element of M. We now have in M an ordered set of
maximum candidates in ¢+ I'; we can output y(tmin pr) and repeat the procedure
for the next event. The algorithm steps are illustrated in Figure [l

/\/\ u4/\ /\/\ """" ol\ /\/\ \ /\
|

t+a t + b t+a t+b t+a t+b
Step 1 Step 2 Step 3

Fig. 1. Steps of the Lemire algorithm. Initially, M contains indexes u1, usz, us, us. At
step 2, a new value appears at ¢ + b which removes u3 and us. At step 3, t + a reaches
w1 which is removed from M.

We obtain the full algorithm, for piecewise linear signals, by integrating this
value with y(t+a) and y(¢t+b). Let us note y, : t — y(t+a) and yp : t — y(t+b);
such signals can be computed by simple shift of the time sequence of y. We see
y(tmin M) as a constant signal, noted y(tmin as). We then use the V algorithm to
take the pointwise maximum of y,, y» and y(¢min pr)- Note that on a step interval
[s,t) of our computation, these three signals are always affine. The pseudo-code
of Algorithm [3 details the overall operation. For simplicity’s sake we ignore the
case whereby M =) (occurs if [a, b] is finer than some time step). In such a case
we would only need to place 7 + 1 in M and output the pointwise maximum of
Ya, Yb ON the current segment.

Lemma 3. The time-complexity of Algorithm[3 is linear in n,,.

Proof. We begin by noticing that the computation of signals y,, s and ¥y’ use
previous algorithms linear in n,,. For each step, the integration of y’ with the
constant signal y(tmina) over the whole domain involves at most 3 samples;

274 A. Donzé, T. Ferrére, and O. Maler

Algorithm 3. Compute(Qa,p) ,¥)
Ya := Shift(y, —a), y» := Shift(y, —b), vy’ := Compute(V, ya, ys)
s:=to—b, t:=s,1:=0, M :={0}
while t +a < tn, do
t:= min{tmin M — Q,tiy1 — b}
if t = tmin v — a then
M := M ~ {min M}
s:=t
end if
if t = ti+1 — b then
while y(tiy1 — b) > y(tmax v) and M # 0 do
M := M ~ {max M}
end while
M:=MU{i+1}
=1+ 1
end if
if s > tg then
2[5ty = Compute(V, y{(s 4y, Y(tminar))
end if
end while
return z

there are at most 2-n, steps, so that the overall cost of these operations is linear
in n,. All that is left to show is that maintaining M throughout the computation
takes time linear in n,,.

Storing M as a doubly-linked queue, we keep a sorted array and the elements
to be accessed are always at the front or the back. Therefore we can consider
the cost of each operation on M as unitary, and independent of the size of M.
Under this hypothesis the cost of computing M is proportional to the number
of value comparisons involved. With the same argument as [Lem06] we notice
that on the whole run, there are n, elements entering M and thus there are also
ny elements are leaving M. Each time the comparison y(tit1 — b) > y(tmax)
evaluates to true, an element is removed from M so there can only be n, such
comparisons that evaluate to true. When it evaluates to false we leave the loop
hence there are at most n, such comparisons that evaluate to false. Over the
whole execution Algorithm [3uses at most 2-n, such value comparisons, making
its execution time linear in n,.

5 Complexity

To keep the discussion short, we restrict the syntax to primitive connectors
{true,z; > 0,—,A, Us}. The complexity results of previous sections can be
summed up by stating the following: there exists a constant A such that for
any signals y, ¥’ and any connector —, A or Uy, the corresponding Compute()
algorithm takes execution time smaller than A - max{n,, n, }.

Efficient Robust Monitoring for STL 275

We are interested in the time complexity of the robustness computation with
respect to both trace and formula size. A trace w = {x1,x3,...,x;} will have
for size |w| := max{ng,,na,,...Nz, }, the maximum number of samples of its
signals. A formula ¢ is represented by its parse tree, in which each node is an
STL operator. A path in the tree has a length taken to be the number of binary
connectors A and Uy it contains. The height of the formula h(y) is then defined
as maximum length for paths in the tree of ¢. Note that our definition of height
ignores atoms and negations. The size of a formula || will be simply defined as
the number of nodes in the tree of ¢.

Theorem 3. There exists a constant d such that for any p, w, the signal z :=
p(p,w,.) has a number of samples n, < d**®) . |w|

Proof. Tf we take y,y’ two signals and z be one of ¢ — min{y(t),y'(¢t)} or ¢ —
sup min{y’(7), inf y}, then by immediate consequence of the existence of
TEt+(a,b] [t,7]
linear time algorithms to compute such signals there exists d such that n, <
d-max{ny, n, }. We now prove the property by induction on the structure of .
For atomic formulas, the height is 0 while the robustness signal has a number
of sampling points at most the size of the input trace. For the negation, we
have h(—p) = h(p) by definition while the number of samples is unchanged, we
conclude by the induction hypothesis. Finally we examine the induction step for
conjunction, the case of timed until is similar.
By definition we have h(¢ A ¢) = max{h(¢),h(¢)} + 1. Let y, ¢’ and z be
the robustness signals of ¢,1 and ¢ A ¥ with respect to w. By the inductive
hypothesis we have n, < d*%) . |w|, and n,, < d*¥) . |w|. From the introductory
remark n, < d-max{d™®)-|w|,d"®).|w|} = d-d®>RERWI} || = @AY).

Corollary 1. The algorithm Robustness(yp,w) has time-complezity in
Ol - d™@) - fw]).

Proof. Let ¢ be an arbitrary formula, and w an arbitrary trace. By Theorem [3]
each subformula v of ¢ has a robustness signal with at most d"(¥) . |w| sampling
points, which is smaller or equal to d*¥) . |w]| in particular. Thus for each node
of the tree of ¢ the corresponding Compute() algorithm takes execution time at
most A-d"®).|w|. There are exactly || such nodes, so that the main robustness
computation of ¢ with respect to w is achieved in time at most A- |- d"#) - |w].

The next example will convince the reader that the robustness signal size can
indeed increase exponentially with the height of the formula.

Ezample 1. Let wg be the trace with signal x, defined over [0, 8) and represented
by the sequence (tia x(tz)a dx(tz))z<4 = {(Oa Oa O)> (53 0> 71)a (63 713 O)> (73 71’ 1)}
We define by induction the formula sequence (pg)ren by

por=a20 prp =g 1 7 (Op, 1 1o A0 1 1y en)

Lol
1 ok+1) ok—1

One can easily show (see Figure[2) that nj the number of samples of p(¢y, wo,)
is 2% - |wg|, while h(px) = 3 - k, so that we have nj, = (/2)2(#*) . |wg|. Note that

276 A. Donzé, T. Ferrére, and O. Maler

1L . . 2102190 A (24194
0 1 2 3 4 5 6 7 8

b : : 1= 01g.11.(¢)0.2]0 A ©[2:4]00)
0 1 2 3 4 5 6 7 8

Fig. 2. Some steps in the computation of p(¢k, wo, .)

this example entails the same behaviour for the size of the satisfaction signals
with respect to the formula height, so that traditional Boolean monitoring also
appears to suffer some level of exponential complexity to this respect.

6 Experiments

The proposed algorithm has been implemented in C++ and interfaced with
the STL parser of Breach. We conducted experiments using signals formed by
i.i.d samples with uniform distribution. To plot Figure Bt(a), we computed the
robustness estimate for three formulas of size 1, 25 and 50 for signals of size
ranging from 10 to 10° samples. We could confirm that for each formula, the
computation time is linear with respect to the signal size. For Figure Bt(b), we
fixed n, = 1000 and generated 20 times 100 formulas of height h(y) ranging
from 1 to 20 and as many signals of size n,. Our goal was to explore experimen-
tally the result of Theorem [Bl For each pair of formula and signal, we computed
the robust signal and the ratio o = Z; between its samples size n, and the
input signal size |w| = n,. We first observe that for each value of h(y), there
is high variability of this ratio. For instance, for h(¢) = 20, « can vary from
1072 to more than 10%. Secondly, we observe that as predicted by Theorem [3]
a appears to be bounded by some exponential d*¥), where we can roughly es-
timate d ~ 1.7. Finally, the average value of a on our experiment seems also to
follow an exponential function of h(«), though with a lower constant d ~ 1.12.
This seems to indicate that exponential complexity is rather the rule than the
exception. However, the conditions of these experiments (random signals, for-
mula maximizing heights) are likely to be much more chaotic than for real
systems and specifications. In particular, other experiments (not reported here)

Efficient Robust Monitoring for STL 277

suggest that “high” formulas resulting mostly from large numbers of conjunctions
do not exhibit an exponential behavior, so that the complexity mostly arise from
nested temporal operators. And we believe that human-written specifications are
not likely to contain deeply nested temporal operators, as the intuition of such
formula is generally hard to grasp.

1e4

|| = 50, Time, ~ 2.45 x 10

N
o

1e3

N

1e2

ation Time (s)

o

Ratio n. over |w| (Log scale)

D et s S

£
T
SO
T \
EangERRBLY T
S e O
Eprriit i
o| = 25, Time, =~ 1.6 n
| = 25,Time, ~ 1.63 1e-1 i¥§ £) 1‘ 1‘ Lo P : : :
05 [ETER T I S
, ‘ PRI LI 0
| =1,Time, ~ 2.34 x 10 °n 1e-2 T e 1,1 . i
% 204 4e4 6ed 8e4 10e4 2 4 6 8 10 12 14 16 18 20
Signal size n, Formula height h(e)
(a) Compution time against signal size (b) Size increase of robust signal against h(y).

Fig. 3. Experimental validation of the complexity results given in Section

Next we compared the performance of our algorithm with that of the DP-
TaLiRo [ESUY12|, based on a dynamic programming approach and implemented
in S-TaLiRo version 1.3. We compared the monitoring of ¢; and U for signals
of various sizes and different time intervals I8 The results are given in Table [l
Except for signals of small size (100-1000), Breach is consistently faster by sev-
eral orders of magnitude. One partial explanation could be the fact that in the
framework of TaLiRo, the robust satisfaction of a predicate is obtained through
the computation of a distance function, which is done by the monitoring algo-
rithm, leading to an additional “hidden cost” [FSUY12]), whereas in our case,
this computation is separated from the monitoringﬂ However, all the predicates
in our experiments are such that the distance function should be trivial to com-
pute so this alone cannot account for the difference in the performance. Also,
our results confirmed that the computation time for bounded time operators
does not depend on the size of the time interval, as in [Lem06], which is an
improvement over the complexity of the DP-TaLiRo algorithm.

3 Note that a comparison of nested formulas would make less sense since DP-TaLiRo
is implemented for fixed time-steps, thus the number of samples cannot vary from
one level to another.

4 In Breach, predicates are of the general form f (z) > 0 and here we considered that
f was computed beforehand to produce the signals y(t) = f(z(t)) as inputs to our
algorithm. Note that this is slightly more general than TaLiRo as f can implement
a distance function [JDDS13]).

278 A. Donzé, T. Ferrére, and O. Maler

Table 1. Experimental comparison with DP-Taliro algorithm

Computation times (s) of robustness estimates for ¢; and Uy
DP-Taliro Breach

Ty le2 le3 led 1ed le2 le3 le4 led
Op,2z7 0.001091 0.00278 0.176 16.6 0.00312 0.00302 0.004 0.0193
Op,1y 0.000689 0.00304 0.212 20.4 0.00286 0.00262 0.00391 0.0173

Op,2yy 0.000713 0.00334 0.253 24.3 0.00268 0.00269 0.00412 0.0185
Op,3yy 0.000707 0.0038 0.278 27.3 0.00302 0.00281 0.00409 0.0208

Up 0523 4.72 46.8 486 0.00577 0.00766 0.0268 0.228

(
U 0482 4.55 47.1 493 0.00567 0.00743 0.0269 0.223
U121y 0468 4.59 46.2 499 0.00545 0.00722 0.0268 0.229
U3 0.462 4.7 46.7 505 0.00567 0.0073 0.0274 0.222

7 Discussion and Future Work

We developed a new algorithm computing robust satisfaction of STL formulas
by piecewise-linear signals. The algorithm is linear in the size of the signal as
measured by the number of sampling points. The algorithm extends to dense
time the algorithm of [Lem06] for maintaining the maximal value of a numerical
sequence over a shifting window and its implementation confirms its theoretical
properties. Our implementation could handle signals with millions of samples and
formulas with tens of operators. It remains to be seen whether the worst-case
exponential growth in the size of the formula occurs for real-life formulas rather
than the random formulas we experimented with. Another important direction
to investigate would be the design of an online variant of our algorithm, which
is by nature offline.

Acknowledgments. We thank Dejan Nickovic and anonymous referees for use-
ful comments. This work was supported by the French ANR projects Syne2Arti
and EQINOCS and by STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.

References

[ALFS11] Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TALIRO:
A tool for temporal logic falsification for hybrid systems. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254-257.
Springer, Heidelberg (2011)

[CGP99] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press
(1999)

[DFGT11] Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robust-
ness analysis and behavior discrimination in enzymatic reaction networks.
PLoS One 6(9) (2011)

[DM10]

[DMB*12]

[Don10]

[DT04]

[FP09]
[FSUY12|
[JDDS13]
[JKN10]
[Lem06]

[MDMF12)]

[MNO4]

[MN12]

[MNPOS]

[MP91]
[MP95]
[Nil86]
[NMO07]
[Pnu77]
[QS82]

[RBFS08]

[Zad65]

Efficient Robust Monitoring for STL 279

Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-
valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 92-106. Springer, Heidelberg (2010)

Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.:
On temporal logic and signal processing. In: Chakraborty, S., Mukund,
M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 92-106. Springer, Heidelberg
2012

]()onzcz, A.: Breach, A toolbox for verification and parameter synthesis of
hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 167-170. Springer, Heidelberg (2010)

D’Souza, D., Tabareau, N.: On timed automata with input-determined
guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT
2004. LNCS, vol. 3253, pp. 68-83. Springer, Heidelberg (2004)

Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science 410(42) (2009)
Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification
of automotive control applications using s-taliro. In: ACC (2012)

Jin, X., Donzé, A., Deshmukh, J., Seshia, S.: Mining requirements from
closed-loop control models. In: HSCC 2013 (2013)

Jones, K.D., Konrad, V., Nickovic, D.: Analog property checkers: a DDR2
case study. Formal Methods in System Design 36(2) (2010)

Lemire, D.: Streaming maximum-minimum filter using no more than three
comparisons per element. CoRR, abs/cs/0610046 (2006)

Mobilia, N., Donzé, A., Moulis, J.-M., Fanchon, E.: A model of the cellular
iron homeostasis network using semi-formal methods for parameter space
exploration. In: HSB (2012)

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous
signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT
2004. LNCS, vol. 3253, pp. 152-166. Springer, Heidelberg (2004)

Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal
circuits. Software Tools for Technology Transfer (2012)

Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of dis-
crete, timed and continuous behaviors. In: Avron, A., Dershowitz, N.,
Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800,
pp. 475-505. Springer, Heidelberg (2008)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, New York (1991)

Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety.
Springer, New York (1995)

Nilsson, N.J.: Probabilistic logic. Artificial intelligence 28(1), 71-87 (1986)
Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for ana-
log systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 304-319. Springer, Heidelberg (2007)

Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 46-57 (1977)
Queille, J.P., Sifakis, J.: Specification and Verification of Concurrent Sys-
tems in CESAR. In: 5th Int. Symp. on Programming (1982)

Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of
satisfaction of temporal logic formulae with applications to systems biol-
ogy. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI),
vol. 5307, pp. 251-268. Springer, Heidelberg (2008)

Zadeh, L.: Fuzzy sets. Information and Control 8, 338-353 (1965)

	Efficient Robust Monitoring for STL
	1 Introduction
	2 Signal Temporal Logic
	3 Computing the Robustness Estimate
	4 Algorithms
	5 Complexity
	6 Experiments
	7 Discussion and Future Work
	References

