Skip to main content

Methanol as a Hydrogen and Energy Carrier

  • Chapter
  • First Online:
Methanol: The Basic Chemical and Energy Feedstock of the Future

Abstract

Energy sources in the future are a widely discussed topic, and many statements have been published recently by scientific societies and organisations. However, in most cases, an overall view on the topics of energy, fuels, raw materials, and climate is missing and only little attention is paid to the recycling of CO2 for use as a raw material (e.g. for the synthesis of methanol), whereas much more emphasis is placed on carbon capture and storage [1]. Future energy systems will rely more and more on renewable energy (RE), such as wind, solar power, and biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bertau, F.X. Effenberger, W. Keim, G. Menges, H. Offermanns, Chem. Ing. Tech. 82, 2055–2058 (2010)

    Article  Google Scholar 

  2. C. Pieper, H. Rubel, Electricity storage, making large-scale adoption of wind and solar energies a reality. Boston Consulting Group Report, 2010

    Google Scholar 

  3. J. Nitsch, B. Wenzel, Langfristscenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland—Leitscenarien. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin, 2009

    Google Scholar 

  4. D. Stolten, T. Grube, M. Weber, Windstrom und Wasserstoff—Eine Alternative, 77. Meeting of the German Physical Society, Working Group Energy, 27.03.2012, Berlin, Germany, 2012

    Google Scholar 

  5. F. Behrendt, Chem. Ing. Tech. 83, 1755 (2011)

    Article  Google Scholar 

  6. J. Auer, Moderne Stromspeicher, Unverzichtbare Bausteine der Energiewende, DB Research, 03 Jan 2012

    Google Scholar 

  7. H. Splietthoff, A. Wauschkuhn, C. Schuhbauer, Chem. Ing. Tech. 83(11), 1792–1804 (2011)

    Article  Google Scholar 

  8. S. Bajohr, M. Götz, F. Graf, F. Ortfoll, Speicherung von regenerativ erzeugter elektrischer Energie in der Erdgasinfrastruktur, Fachberichte Rohrnetz, gwf-Gas/Erdgas, April 2011, pp. 200–210

    Google Scholar 

  9. S. Kohler, Siemens Publication Pictures of the Future, 2012, pp. 48–49

    Google Scholar 

  10. J. Nitsch, T. Pregger, T. Naegler, N. Gerhardt, B. Wenzel, Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland, DLR Stuttgart, Fraunhofer-IWES, kassel,IfnE Teltow; Studie im Auftrag des BMU, März 2012

    Google Scholar 

  11. Frankfurter Allgemeine Zeitung, Das Deutsche Stromnetz läuft über. 11 Jan 2013

    Google Scholar 

  12. M. Sterner, N. Gerhardt, Y.M. Saint-Drenan, M. Specht, B. Stürmer, U. Zuberbühler Erneuerbares Methan—Eine Lösung zur Integration und Speicherung Erneuerbarer Energien und ein Weg zur regenerativen Vollversorgung. Solarzeitalter 01/2010. (Eurosolar, Berlin 2010)

    Google Scholar 

  13. F. Schüth, Chem. Ing. Tech. 83, 1984–1993 (2011)

    Article  Google Scholar 

  14. T. Klaus, C. Vollmer, K. Werner, H. Lehmann, K. Müschen, Energieziel 2050: 100% Strom aus erneuerbaren Quellen (Federal Environment Agency, Dessau, Germany, 2010)

    Google Scholar 

  15. Waidhas, M, Dynamic electrolysis for grid surplus and frequency control. Presentation at the Dechema Kolloqium “Wind to Gas” Frankurt, 7 March 2013

    Google Scholar 

  16. http://www.iea.org/stats

  17. F. Dormen, C. Pauly, G. Traufetter, Der Spiegel 22/2013, p. 74

    Google Scholar 

  18. German Renewably Energy Agency, Berlin, 2012

    Google Scholar 

  19. B. Lomborg, Der Spiegel 12/2013, pp. 122, 123

    Google Scholar 

  20. M. Specht, M. Sterner, F. Baumgart, B. Feigl, V. Frick, B. Stürmer, U. Zuberbühler, G. Waldstein, New routes for the Produktion of substitute natural gas (SNG) from renewable energy. FVEE Annual Meeting, Berlin, Germany, 2010

    Google Scholar 

  21. http://en.wikipedia.org/wiki/Heat_of_combustion and references cited there

  22. H. Eilers, M. Iglesias Conzalez, G. Schaub, in Chemical Storage of Electricity in hydrocarbon Fuels. Reducing the Carbon footprint of fuels and petrochemicals, DGMK Conference, Berlin, 8–10 October 2012

    Google Scholar 

  23. M. Waidhas, Dynamic Electrolysis for Grid Surplus and Frequency Control, DECHEMA Kolloquium Wind-to-Gas, Frankfurt, 7.3.2013, 2013

    Google Scholar 

  24. T. Smolinka, M. Günther, J. Garche, Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Fraunhofer ISE/FCBAT (2011) (http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/NOW-Studie-Wasserelektrolyse-2011.pdf), Berlin, 2010

  25. DVGW-Arbeitsblatt G 262; Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung. ISSN 0176-3490,2004

    Google Scholar 

  26. T. Kolb, Power-to-Gas (PtG), ein Baustein des künftigen Energiesystems. DECHEMA Kolloquium Wind-to-Gas, Frankfurt, 07 March 2013

    Google Scholar 

  27. B. Müller, K. Müller, D. Techmann, W. Arlt, Chem. Ing. Tech. 83, 2002–2013 (2011)

    Article  Google Scholar 

  28. BDEW, Energiemarkt Deutschland—Zahlen und Fakten zur Gas-,Strom- und Fernwärmeversorgung, 2010

    Google Scholar 

  29. Crotingo et al., 18 World Hydrogen Energy Conference, Essen, Germany, 2010

    Google Scholar 

  30. http://www.enertag.com/projektentwicklung/hybridkraftwerk.htm

  31. Saur et al., Wind-Hydrogen Project: Electrolyser Capital—Cost Study. Technical Report, National Renewable Energy laboratory, Golden, CO, 2008

    Google Scholar 

  32. W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science 330, 1797–1801 (2010)

    Article  Google Scholar 

  33. P. Sabatier, J. Senderens, Acad. Sci. 134, 514–516 (1902)

    Google Scholar 

  34. S. Rieke, Energ. Wasser Prax. 9, 66–72 (2010)

    Google Scholar 

  35. R. Grünwald, M. Ragwitz, F. Sensfuß, J. Winkler, Regenerative Energieträger zur Sicherung der Grundlast in der Stromversorgung. Office of Technology Assessment (TAB) at the German Parliament, Berlin, 2012

    Google Scholar 

  36. H. Krause, G. Müller-Syring, Integration von Wasserstoff in das Erdgasnetz. Power-to-gas—die Energiespeicherung der Zukunft. 4. Sächsischer Brennstoffzellentag, Leipzig, 2011

    Google Scholar 

  37. G. Müller-Syring, M. Henel, Power-to-gas, Ein Beitrag zur Energiewende. Technik-Dialog der Bundesnetzagentur, Schwerpunkt Speichertechnologien, Bonn, 16.März 2012

    Google Scholar 

  38. M. Sterner, Ph.D. thesis, Universität Kassel, 2009

    Google Scholar 

  39. T. Amon, B. Amon, V. Kryvoruchko, A. Machmüller, K. Hopfner-Sixt, V. Bodiroza, R. Hrbek, J. Friedel, E. Pötsch, H. Wagentristl, M. Schreiner, W. Zollitsch, Biores. Technol. 98, 3204–3212 (2007)

    Article  Google Scholar 

  40. J. Hill, Agron. Sustain. Dev. 27, 1–12 (2007)

    Article  Google Scholar 

  41. R. Rathmann, A. Szklo, R. Schaeffer, Renew. Energy 35, 14–22 (2010)

    Article  Google Scholar 

  42. B. Wenzel, J. Nitsch, Langfristscenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland. Entwicklung der EEG-Vergütung, EEG- Differenzkosten und EEG-Umlage bis 2030. On behalf of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Teltow, Stuttgart, 2010

    Google Scholar 

  43. G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  44. C.N.K. Kumar, K. Tran, O.F. Sigurbjornsson, J. Whitlow, K. Alexander, WO2011061764, 2011

    Google Scholar 

  45. K. Tran, P. Wuebben, Vision of Renewable Methanol in the EU: Milestones and Timeline. Methanol Forum 2012, 29.09.2012, Houston, Texas, 2012

    Google Scholar 

  46. Landsvirikjun Corp., Press release, 23 Dec 2010

    Google Scholar 

  47. S. Bajohr, M. Götz, F. Graf, T. Kolb, Gas/Erdgas 153, 328–335 (2012)

    Google Scholar 

  48. F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, Catal. Today 171, 242–250 (2011)

    Article  Google Scholar 

  49. Data from Lurgi AG, personal communication, 2013

    Google Scholar 

  50. W. Seuser, G. Harzfeld, G. Balzer, E. Harzfeld, in Fachhochschule Stralsund. Windpower to Cernol- a hydrogen storage technology, Presentation at the Conference: Understanding Reality-Facing Challenges-Creating Future, Brussels, 24.November 2011

    Google Scholar 

  51. http://bluefuelenergy.com/ghgenius/ghgenius.html

  52. Data from Erdgasverdichterstation Mallnow, Oberhausen, MAN Turbo AG, personal communication, 2009

    Google Scholar 

  53. VDB Verband der Bahnindustrie, Zahlen und Fakten: Bahnindustrie, 2010

    Google Scholar 

  54. G.E. Herdin, Increasing Gas Engine Effiency (World Energy Engineering Congress, Atlanta, 2000)

    Google Scholar 

  55. B.J. Bowers, J.L. Zhao, M. Ruffo, R. Khan, D. Dattatraya, N. Dushman, J. Beziat, F. Boudjemaa, Int. J. Hydr. Energy 32, 1437–1442 (2007)

    Article  Google Scholar 

  56. M. Müller, Regenerative Fuel Cells, in Fuel Cell Science and Engineering, vol. 2, ed. by D. Stolten, B. Emonts (Wiley-VCH, Weinheim, 2012), pp. 219–245

    Chapter  Google Scholar 

  57. N. Hotz, M. Lee, C.P. Grigoropoulos, S.M. Senn, D. Poulikakos, Int. J. Heat Mass Transfer 49, 2397–2411 (2006)

    Article  Google Scholar 

  58. D. Johnson, IHS Global methanol market review, June 2012. Download from: http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf

  59. H. Ghanbari, M. Helle, H. Saxén, Chem. Eng. Process. Process Intens. 61, 58–68 (2012)

    Article  Google Scholar 

  60. G.H. Shiomoto, D.E. Shore, Methanol Clean Coal Stationary Engine Demonstration Project. Executive Summary. California Energy Commision Report P500-86-004, 1986

    Google Scholar 

  61. G. Hagan, S. Cochrane, HCN Market Research Report (TLA Process Technologies, Miami, 1998)

    Google Scholar 

  62. Carbon-Clean Technologies AG, DE202010012734, 2012

    Google Scholar 

  63. M. Beckmann, C. Pieper, R. Scholz, M. Muster, Wasser und Abfall 14(7–8), 47–55 (2012)

    Article  Google Scholar 

  64. M. Beckmann, C. Pieper, R. Scholz, M. Muster, Wasser und Abfall 14(9), 20–27 (2012)

    Google Scholar 

  65. M. Sterner, M. Jentsch, Energiewirtschaftliche und ökologische Bewertung eines Windgasangebots, Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Kassel, 2011

    Google Scholar 

  66. Frankfurter Allgemeine Zeitung, Der unheimliche Erfolg der Energiewende. 21 Feb 2013

    Google Scholar 

  67. Frankfurter Allgemeine Zeitung, Stromexporteur Deutschland vervierfacht Überschuss. 03 Apr 2013

    Google Scholar 

  68. Frankfurter Allgemeine Zeitung, Erdgassubstitut aus dem Bioreaktor, 04 Dec 2012

    Google Scholar 

  69. J. Nitsch, T. Pregger, Y. Scholz, T. Naegler, M. Sterner, N. Gerhardt, A. von Oehsen, C. Pape, Y.-M. Saint-Drenan, B. Wenzel, Langzeitszenarien und Strategien für den Ausbau der erneuerbaren Energien, in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. “Leitstudie 2010”, German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin, 2010

    Google Scholar 

  70. M. Sterner, N. Gerhardt, M. Jentsch, M. Specht, B. Stürmer, U. Zuberbühler, Perspektiven des Energieträgers Methan. Methan aus Solar-und Windenergie, Solarzeitalter, 01/2010, Eurosolar, Berlin

    Google Scholar 

  71. T. Molinka, M. Günther, J. Garche, Stand und Entwicklungspotential der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien. Kurzfassung des Abschlussberichts. NOW–Studie Fraunhofer ISE, 5 July 2011

    Google Scholar 

  72. A. Tremel, M. Walz, M. Baldauf, in Use Case Analysis for CO 2 -based Renewable Fuels. 3rd International Conference on Energy Process Engineering, Frankfurt, Germany, 4-6 June 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludolf Plass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plass, L., Bertau, M., Linicus, M., Heyde, R., Weingart, E. (2014). Methanol as a Hydrogen and Energy Carrier. In: Bertau, M., Offermanns, H., Plass, L., Schmidt, F., Wernicke, HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39709-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39709-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39708-0

  • Online ISBN: 978-3-642-39709-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics