Skip to main content

Electron Microscopy of Thin Film Inorganic and Organic Photovoltaic Materials

  • Chapter
  • First Online:
Transmission Electron Microscopy Characterization of Nanomaterials

Abstract

Scanning and transmission electron microscopy have played an important role in the progress made by photovoltaic devices over the past two decades. With thin-film photovoltaic (PV) devices now accounting for more than 20 % of total PV sales, this chapter reviews the important insights into PV materials gleaned from electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shockley W, Queisser HJ (1960) Detailed balance limit of efficiency of pn junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2013) Solar cell efficiency tables (version 41). Prog Photovolt Res Appl 21:1–11

    Article  Google Scholar 

  3. Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51:4494

    Article  CAS  Google Scholar 

  4. Riordan C, Hulstrom R (1990) What is an air mass 1.5 spectrum. Photovolt Spec Conf 21:1085–1088

    Article  Google Scholar 

  5. Burgers AR, Eikelboom JA, Schoenecker A, Sinke WC (1996) Improved treatment of the strongly varying slope in fitting solar cell I-V curves. Photovolt Spec Conf 25:569–572

    Google Scholar 

  6. Hegedus SS, Shafarman WN (2004) Thin-film solar cells: device measurements and analysis. Prog Photovolt Res Appl 12:155–176

    Article  CAS  Google Scholar 

  7. Dhere RG, Duenow JN, Dehart CM, Li JV, Kuciauskas D, Gessert TA (2012) Development of substrate structure CdTe photovoltaic devices with performance exceeding 10%. Photovolt Spec Conf 38:003208–003211

    Google Scholar 

  8. Wu JJ, Wu HC, Zhao CZ (2012) CdTe solar cells on flexible metallic substrates. Adv Mater Res 535:2075–2078

    Article  CAS  Google Scholar 

  9. Cusano DA (1963) CdTe solar cells and photovoltaic heterojunctions in II-VI compounds. Solid State Electron 6:217–233

    Article  CAS  Google Scholar 

  10. Bonnet D, Rabenhorst H (1972) New results on the development of a thin film p-CdTe- nCdS heterojunction solar cell. Photovolt Spec Conf 9:129–132

    Google Scholar 

  11. Tyan Y-S, Perez-Albuerne EA (1982) Integrated array of photovoltaic cells having minimized shorting losses. US Patent No. 4315096

    Google Scholar 

  12. Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62:2851–2852

    Article  CAS  Google Scholar 

  13. Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Sheldon P (2001) 16.5% efficient CdS/CdTe polycrystalline thin-film solar cell. In: Proceedings of the 17th European photovoltaic solar energy conference, Munich, p 995

    Google Scholar 

  14. Shay JL, Wagner S, Kasper HM (1975) Efficient CuInSe2/CdS solar cells. Appl Phys Lett 27:89–90

    Article  CAS  Google Scholar 

  15. Mickelsen RA, Chen WS, Hsiao YR, Lowe VE (1984) Polycrystalline thin-film CuInSe2/CdZnS solar cells. Electron Devices 5:542–546

    Article  Google Scholar 

  16. Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM (1994) High-efficiency CuIn x Ga1−x Se2 solar cells made from (In x Ga1−x )2Se3 precursor films. Appl Phys Lett 65:198–200

    Article  CAS  Google Scholar 

  17. Chen S, Gong XG, Walsh A, Wei S-H (2009) Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first principles insights. Appl Phys Lett 94:041903

    Article  CAS  Google Scholar 

  18. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S (2010) Thermally evaporated Cu2ZnSnS4 solar cells. Appl Phys Lett 97:143508

    Article  CAS  Google Scholar 

  19. Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W-C, Goodrich A, Noufi R (2012) Co-evaporated Cu2ZnSnS4 films and devices. Sol Energy Mater Sol Cells 101:154–159

    Article  CAS  Google Scholar 

  20. Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth- abundant liquid-processed absorber. Adv Energy Mater 22:E156–E159

    Article  CAS  Google Scholar 

  21. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2013) Beyond 11 % efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater 3:34–38

    Article  CAS  Google Scholar 

  22. Scragg JJ, Dale PJ, Peter LM (2009) Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517:2481–2484

    Article  CAS  Google Scholar 

  23. Chan CP, Lam H, Surya C (2010) Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol Energy Mater Sol Cells 94:207–211

    Article  CAS  Google Scholar 

  24. Romero MJ, Dui H, Teeter G, Yan Y, Al-Jassim MM (2011) Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys Rev B 84:165324

    Article  CAS  Google Scholar 

  25. Thompson BC, Fréchet JMJ (2008) Polymer-fullerene composite solar cells. Ang Chem Int Ed 47:58–77

    Article  CAS  Google Scholar 

  26. Sariciftci NS, Smilowitz LB, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  CAS  Google Scholar 

  27. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    Article  CAS  Google Scholar 

  28. Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Scherf U, Harth E, Gügel A, Mllen K (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59:15346–15351

    Article  CAS  Google Scholar 

  29. Liang Y, Xu Z, Xia J, Ting Tsai S, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  CAS  Google Scholar 

  30. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open circuit voltage, short circuit current density and fill factor in polymer solar cells. Adv Mater 23:4636–4643

    Article  CAS  Google Scholar 

  31. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  CAS  Google Scholar 

  32. Wang T, Pearson AJ, Lidzey DG, Jones RAL (2011) Evolution of structure, optoelectronic properties and device performance of polythiophene: fullerene solar cells during thermal annealing. Adv Funct Mater 21:1383–1390

    Article  CAS  Google Scholar 

  33. Pearson AJ, Wang T, Jones RAL, Lidzey DG, Staniec PA, Hopkinson PE, Donald AM (2012) Rationalising phase transitions with thermal annealing temperatures for P3HT: PCBM organic photovoltaic devices. Macromolecules 45:1499–1508

    Article  CAS  Google Scholar 

  34. Li G, Shrotriya V, Yao Y, Huang J, Yang Y (2007) Manipulating regioregular poly(3-hexylthiophene): [6, 6]-phenyl-C61-butyric acid methyl ester blends-route towards high efficiency polymer solar cells. J Mater Chem 17:3126–3140

    Article  CAS  Google Scholar 

  35. Berson S, De Bettignies R, Bailly S, Guillerez S (2007) Poly(3-hexylthiophene) fibres for photovoltaic applications. Adv Funct Mater 17:1377–1384

    Article  CAS  Google Scholar 

  36. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644

    Article  CAS  Google Scholar 

  37. Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Effect of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789

    Article  CAS  Google Scholar 

  38. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623

    Article  CAS  Google Scholar 

  39. De Sio A, Madena T, Huber R, Parisi J, Neyshtadt S, Deschler F, Da Como E, Esposito S, von Hauff E (2011) Solvent additives for tuning the photovoltaic properties of polymer-fullerene solar cells. Sol Energy Mater Sol Cells 95:3536–3542

    Article  CAS  Google Scholar 

  40. Nowell MM, Scarpulla MA, Compaan AD, Liu X, Paudel NR, Kwon D, Wieland KA (2011) Electron backscatter diffraction and photoluminescence of sputtered CdTe thin films. Photovolt Spec Conf 37:001327–001332

    Google Scholar 

  41. Nowell MM, Wright SI, Scarpulla MA, Compaan AD, Liu X, Paudel NR, Wieland KA (2012) The correlation of performance in CdTe photovoltaics with grain boundaries. Phys Fail Anal Integ Circ 19:1–7

    Google Scholar 

  42. Wald FV, Entine G (1978) Crystal growth of CdTe for γ-ray detectors. Nucl Inst Methods 150:13–23

    Article  CAS  Google Scholar 

  43. Toušková DK, Toušek J (1997) Preparation and characterisation of CdS/CdTe thin film solar cells. Thin Solid Films 293:272–276

    Article  Google Scholar 

  44. Hommel D, Waag A, Scholl S, Landwehr G (1992) Chlorine: a new efficient n-type dopant in CdTe layers grown by molecular beam epitaxy. Appl Phys Lett 1:1546–1548

    Article  Google Scholar 

  45. Romeo A, Bätzner DL, Zogg H, Tiwari AN (2000) Recrystallization in CdTe/CdS. Thin Solid Films 361-362:420–425

    Article  CAS  Google Scholar 

  46. Niles DW, Waters D, Rose D (1998) Chemical reactivity of CdCl2 wet-deposited on CdTe films studied by X-ray photoelectron spectroscopy. Appl Surf Sci 136:221–229

    Article  CAS  Google Scholar 

  47. Terheggen M, Heinrich H, Kostorz G, Baetzner D, Romeo A, Tiwari AN (2004) Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells. Interf Sci 12:259–266

    Article  CAS  Google Scholar 

  48. Durose K, Edwards PR, Halliday DP (1999) Materials aspects of CdTe/CdS solar cells. J Cryst Growth 197:733–742

    Article  CAS  Google Scholar 

  49. Romero MJ, Al-Jassim MM, Dhere RG, Hasoon FS, Contreras MA, Gessert TA, Moutinho HR (2002) Beam injection methods for characterizing thin-film solar cells. Prog Photovolt Res Appl 10:445–455

    Article  CAS  Google Scholar 

  50. Consonni V, Feuillet G, Renet S (2006) Spectroscopic analysis of defects in chlorine doped polycrystalline CdTe. J Appl Phys 99:053502

    Article  CAS  Google Scholar 

  51. Yan Y, Al-Jassim MM, Jones KM (2003) Structure and effects of double-positioning twin boundaries in CdTe. J Appl Phys 94:2976

    Article  CAS  Google Scholar 

  52. Yan Y, Jones KM, Jiang CS, Wu XZ, Noufi R, Al-Jassim MM (2007) Understanding the defect physics in polycrystalline photovoltaic materials. Physica B 401–402:25–32

    Article  CAS  Google Scholar 

  53. Yan Y, Jones KM, Al-Jassim MM, Dhere R, Wu X (2011) Transmission electron microscopy study of dislocations and interfaces in CdTe solar cells. Thin Solid Films 519:7168–7172

    Article  CAS  Google Scholar 

  54. Ohata K, Saraie J, Tanaka T (1973) Phase diagram of the CdS-CdTe pseudobinary system. Jpn J Appl Phys 12:1198

    Article  CAS  Google Scholar 

  55. Lane DW, Conibeer GJ, Wood DA, Capper P, Romani S, Hearne S (1999) Sulfur diffusion in CdTe and the phase diagram of the CdS-CdTe pseudo-binary alloy. J Cryst Growth 197:743–748

    Article  CAS  Google Scholar 

  56. Lane DW, Rogers KD, Painter JD, Wood DA, Ozsan ME (2000) Structural dynamics in CdS-CdTe thin films. Thin Solid Films 361–362:1–8

    Article  Google Scholar 

  57. Moutinho HR, Dhere RG, Jiang C-S, Yan Y, Albin DS, Al-Jassim MM (2010) Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy. J Appl Phys 108:074503

    Article  CAS  Google Scholar 

  58. Albin DS, Yan Y, Al-Jassim MM (2002) The effect of oxygen on interface microstructure evolution in CdS/CdTe solar cells. Prog Photovolt Res Appl 10:309–322

    Article  CAS  Google Scholar 

  59. Edwards PR, Halliday DP, Durose K, Richter H, Bonnet D (1997) The influence of CdCl2 treatment and interdiffusion on grain boundary passivation in CdTe/CdS solar cells. In: Proceedings of the 14th European photovoltaic solar energy conference, Barcelona, pp 2083–2086

    Google Scholar 

  60. McCandless BE, Engelmann MG, Birkmire RW (2001) Interdiffusion of the CdS/CdTe thin films: modeling x-ray diffraction line profiles. J Appl Phys 89:988–994

    Article  CAS  Google Scholar 

  61. Metzger WK, Albin D, Romero MJ, Dippo P, Young M (2006) CdCl2 treatment, S diffusion and recombination in polycrystalline CdTe. J Appl Phys 99:103703

    Article  CAS  Google Scholar 

  62. Gessert TA, Burst JM, Wei S-H, Ma J, Kuciauskas D, Rance WL, Barnes TM, Duenow JN, Reese MO, Li JV, Yound MR, Dippo P (2012) Pathways toward higher performance CdS/CdTe devices: Te exposure of CdTe surface before ZnTe:Cu/Ti contacting. Thin Solid Films 535:237–240

    Google Scholar 

  63. Jarkov A, Bereznev S, Laes K, Volobujeva O, Traksmaa R, ÖPik A, Mellikov E (2011) Conductive polymer PEDOT: PSS back contact for CdTe solar cell. Thin Solid Films 519:7449–7452

    Article  CAS  Google Scholar 

  64. Taylor AA, Major JD, Phillips L, McLeod I, Durose K, Mendis B.G Manuscript in preparation

    Google Scholar 

  65. Irvine SJC, Barrioz V, Lamb D, Jones EW, Rowlands-Jones RL (2008) MOCVD of thin film photovoltaic solar cells – next generation production technology? J Cryst Growth 310:5198–5203

    Article  CAS  Google Scholar 

  66. Swanson DE, Lutze RM, Sampath WS, Williams JD (2012) Plasma cleaning of TCO surfaces prior to CdS/CdTe deposition. Photovolt Spec Conf 38:000859–000863

    Google Scholar 

  67. Gabor AM, Tuttle JR, Bode MH, Franz A, Tennant AL, Contreras MA, Noufi R, Jensen DG, Hermann AM (1996) Band-gap engineering in Cu(In, Ga)Se2 thin films grown from (In, Ga)2Se3 precursors. Sol Energy Mater Sol Cells 41:247–260

    Article  Google Scholar 

  68. Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock H-W, Werner JH (2001) Back surface band gap gradings in Cu(In,Ga)Se2 solar cells. Thin Solid Films 387:11–13

    Article  CAS  Google Scholar 

  69. Wada T, Kohara N, Nishiwaki S, Negami T (2001) Characterization of the Cu(In, Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films 387:118–122

    Article  CAS  Google Scholar 

  70. Nishiwaki S, Kohara N, Negami T, Wada T (1998) MoSe2 layer formation at Cu(In, Ga)Se2/Mo interfaces in high efficiency Cu(In1−xGax)Se2 solar cells. Jpn J Appl Phys 37:L71–L73

    Article  CAS  Google Scholar 

  71. Scheer R, Diesner K, Lewerenz H-J (1995) Experiments on the microstructure of evaporated CuInS2 thin films. Thin Solid Films 268:130–136

    Article  CAS  Google Scholar 

  72. Klenk R, Walter T, Schmid D, Schock HW (1993) Growth mechanisms and diffusion in multinary and multilayer chalcopyrite thin films. Jpn J Appl Phys 32:57–61

    Article  CAS  Google Scholar 

  73. Hasoon FS, Yan Y, Althani H, Jones KM, Moutinho HR, Alleman J, Al- Jassim MM, Noufi R (2001) Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices. Thin Solid Films 387:1–5

    Article  CAS  Google Scholar 

  74. Wei S-H, Zunger A (1995) Band offsets and optical bowings of chalcopyrites and Zn- based II-VI alloys. J Appl Phys 78:3846–3856

    Article  CAS  Google Scholar 

  75. Abou-Ras D, Schorr S, Schock H-W (2007) Grain-size distributions and grain boundaries of chalcopyrite-type thin films. J Appl Crystallogr 40:841–848

    Article  CAS  Google Scholar 

  76. Abou-Ras D, Koch CT, Vüstner V, van Aken PA, Jahn U, Contreras MA, Ca-ballero R, Kaufmann CA, Scheer R, Unold T, Schock H-W (2009) Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties. Thin Solid Films 517:2545–2549

    Article  CAS  Google Scholar 

  77. Ott N, Hanna G, Rau U, Werner JH, Strunk HP (2004) Texture of Cu(In, Ga)Se2 thin films and nanoscale cathodoluminescence. J Phys Condens Matter 16:S85

    Article  CAS  Google Scholar 

  78. Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless BE, Noufi R (2008) Characterization of 19.9% efficient CIGC absorbers. Photovolt Spec Conf 33:1–6

    Google Scholar 

  79. Romero MJ, Ramanathan K, Contreras MA, Al-Jassim MM, Noufi R, Sheldon P (2003) Cathodoluminescence of Cu(In, Ga)Se2 thin films used in high-efficiency solar cells. Appl Phys Lett 83:4770–4772

    Article  CAS  Google Scholar 

  80. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Germany.

    Book  Google Scholar 

  81. Bodegård M, Stolt L, Hedstrom J (1994) The influence of sodium on the grain structure of CuInSe2 films for photovoltaics applications. Eur Sol Energy Conf 12:1743–1746

    Google Scholar 

  82. Bodegård M, Granath K, Stolt L (2000) Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films 361:9–16

    Article  Google Scholar 

  83. Rudmann D, Bilger G, Kaelin M, Haug F-J, Zogg H, Tiwari AN (2003) Effects of NaF coevaporation on the structural properties of Cu(In, Ga)Se2 thin films. Thin Solid Films 431:37–40

    Article  CAS  Google Scholar 

  84. Jasenek A, Rau U, Nadenau V, Schock H-W (2000) Electronic properties of CuGaSe- based heterojunction solar cells. Part II. Defect Spectroscopy. J Appl Phys 87:594

    Article  CAS  Google Scholar 

  85. Rudmann D, Da Cunha AF, Kaelin M, Kurdesau F, Zogg H, Tiwari AN, Bilger G (2004) Efficiency enhancement of Cu(In, Ga)Se2 solar cells due to post-deposition Na incorporation. Appl Phys Lett 84:1129–1131

    Article  CAS  Google Scholar 

  86. Cahen D, Noufi R (1989) Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Appl Phys Lett 54:558–560

    Article  CAS  Google Scholar 

  87. Lei C, Li CM, Rockett A, Robertson IM (2007) Grain boundary compositions in Cu(In, Ga)Se2. J Appl Phys 101:024909

    Article  CAS  Google Scholar 

  88. Abou-Ras D, Schaffer B, Schaffer M, Schmidt SS, Caballero R, Unold T (2012) Direct insight into grain boundary reconstruction in polycrystalline Cu(In, G)Se2with atomic resolution. Phys Rev Lett 108:075502

    Article  CAS  Google Scholar 

  89. Niles DW, Al-Jassim MM, Ramanathan K (1999) Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films. J Vacuum Sci Technol A Vacuum, Surf Films 17:291–296

    Article  CAS  Google Scholar 

  90. Cadel E, Barreau N, Kessler J, Pareige P (2010) Atom probe study of sodium distribution in polycrystalline Cu(In, Ga)Se2 thin film. Acta Mater 58:2634–2637

    Article  CAS  Google Scholar 

  91. Scheer R, Schock H-W (2011) Chalcogenide photovoltaics: physics, technologies and thin film devices. Wiley-VCH Verlag GmbH & Co. KGaA, Germany

    Book  Google Scholar 

  92. Nagoya A, Asahi R, Wahl R, Kresse G (2010) Defect formation and phase stability of Cu2ZnSnS4 photovoltaic materials. Phys Rev B 81:113202

    Article  CAS  Google Scholar 

  93. Mendis BG, Shannon MD, Goodman MCJ, Major JD, Claridge R, Halliday DP, Durose K (2012) Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning electron microscopy. Prog Photovolt Res Appl. doi:10.1002/pip.2279

    Google Scholar 

  94. Schorr S (2011) The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol Energy Mater Sol Cells 95:1482–1488

    Article  CAS  Google Scholar 

  95. Wätjen TW, Engman J, Edoff M, Platzer-Björkman C (2012) Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells. Appl Phys Lett 100:173510

    Article  CAS  Google Scholar 

  96. Dale PJ, Hoenes K, Scragg JJ, Siebentritt S (2009) A review of the challenges facing kesterite based thin film solar cells. Photovolt Specialists Conf (PVSC) 34:002080–002085

    Google Scholar 

  97. Fontané X, Calvo-Barrio L, Izquierdo-Roca Z, Saucedo E, Pérez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: characterisation of Cu2ZnSnS4 layers for solar cell applications. Appl Phys Lett 98:181905

    Article  CAS  Google Scholar 

  98. Wang K, Shin B, Reuter KB, Todorov T, Mitzi DB, Guha S (2011) Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells. Appl Phys Lett 98:051912

    Article  CAS  Google Scholar 

  99. Platzer-Björkman C, Scragg JJ, Flammersberger H, Kubart T, Edoff M (2012) Influence of precursor sulfur content on the film formation and compositional changes in Cu2ZnSnS4 films and solar cells. Sol Energy Mater Sol Cells 98:110–117

    Article  CAS  Google Scholar 

  100. Scragg JJ, Dale PJ, Colombara D, Peter LM (2012) Thermodynamic aspects of the synthesis of then-film materials for solar cells. Chem Phys Chem 13:3035–3046

    CAS  Google Scholar 

  101. Wätjen TW, Scragg JJ, Ericson T, Edoff M, Platzer-Björkman C (2012) Secondary compound formation revealed by transmission electron microscopy at the Cu2ZnSnS4/Mo interface. Thin Solid Films 535:31–34

    Article  CAS  Google Scholar 

  102. Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB (2012) Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se, S)4 solar cell. Prog Photovolt Res Appl 20:6–11

    Article  CAS  Google Scholar 

  103. Taretto K, Rau U, Werner JH (2005) Numerical simulation of grain boundary effects in Cu(In,Ga)Se2 thin film solar cells. Thin Solid Films 480–481:8–12

    Article  CAS  Google Scholar 

  104. Nerat M, Černivec G, Smole F, Topič M (2008) Simulation study of the effects of grain shape and size on the performance of Cu(In,Ga)Se2 solar cells. J Appl Phys 104:083706

    Article  CAS  Google Scholar 

  105. Metzger WK, Gloeckler M (2005) The impact of charged grain boundaries on thin film solar cells and characterisation. J Appl Phys 98:063701

    Article  CAS  Google Scholar 

  106. Gloeckler M, Sites JR, Metzger WK (2005) Grain boundary recombination in Cu(In, Ga)Se2 solar cells. J Appl Phys 98:113704

    Article  CAS  Google Scholar 

  107. Major JD, Proskuryakov YY, Durose K, Zoppi G, Forbes I (2010) Control of grain size in sublimation grown CdTe and the improvement in performance of devices with systematically increased grain size. Sol Energy Mater Sol Cells 94:1107–1112

    Article  CAS  Google Scholar 

  108. Visoly-Fisher I, Cohen SR, Gartsman K, Ruzin A, Cahen D (2006) Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single grain boundary scanning probe microscopy. Adv Funct Mater 16:649–660

    Article  CAS  Google Scholar 

  109. Jiang CS, Noufi R, Ramanathan K, AbuShama JA, Moutinho HR, Al-Jassim MM (2004) Does the local built-in potential on grain boundaries of Cu(In, Ga)Se2 thin films benefit photovoltaic performance of the device? Appl Phys Lett 85:2625–2627

    Article  CAS  Google Scholar 

  110. Terheggen M, Heinrich H, Kostorz G, Romeo A, Baetzner D, Tiwari AN, Bosio A, Romeo N (2003) Structural and chemical interface characterisation of CdTe solar cells by transmission electron microscopy. Thin Solid Films 431–432:262–266

    Article  CAS  Google Scholar 

  111. Yan Y, Al-Jassim MM, Jones KM (2004) Passivation of double positioning twin boundaries in CdTe. J Appl Phys 96:320–326

    Article  CAS  Google Scholar 

  112. Zhang L, Da Silva JLF, Li J, Yan Y, Gessert TA, Huai Wei S (2008) Effect of co-passivation of Cl and Cu on CdTe grain boundaries. Phys Rev Lett 101:155501

    Article  CAS  Google Scholar 

  113. Hofmann DM, Omling P, Grimmeiss HG, Meyer BK, Benz KW, Sinerius D (1992) Identification of the chlorine A-centre in CdTe. Phys Rev B 45:6247–6250

    Article  CAS  Google Scholar 

  114. Halliday DP, Eggleston JM, Durose K (1998) A photoluminescence study of polycrystalline thin film CdTe/CdS solar cells. J Cryst Growth 186:543–549

    Article  CAS  Google Scholar 

  115. Galloway SA, Edwards PR, Durose K (1999) Characterisation of thin film CdS/CdTe solar cells using electron and optical beam induced current. Sol Energy Mater Sol Cells 57:61–74

    Article  CAS  Google Scholar 

  116. Edwards PR, Galloway SA, Durose K (2000) Erratum to EBIC and luminescence mapping of CdTe/CdS solar cells. Thin Solid Films 372:284–291

    Article  CAS  Google Scholar 

  117. Visoly-Fisher I, Cohen SR, Cahen D (2003) Direct evidence for grain boundary depletion in polycrystalline CdTe from nanoscale resolved measurements. Appl Phys Lett 82:556–558

    Article  CAS  Google Scholar 

  118. Woods LM, Levi DH, Kaydanov V, Robinson GY, Ahrenkiel RK (1998) Proceedings of 2nd world conference on photovoltaic solar energy conversion, vol 1. European Commission, Ispra, Italy, p 1043–1046

    Google Scholar 

  119. Woods LM, Robinson GY, Levi DH (2000) The effects of CdCl2 on CdTe electrical properties using a new theory for grain boundary conduction. Proceedings of 28th IEEE photovoltaic specialists conference. IEEE, Piscataway, NJ, p 603–606

    Google Scholar 

  120. Cojocaru-Mirédin O, Choi P, Wuerz R, Raabe D (2011) Atomic scale distribution of impurities in CuInSe2-based thin film solar cells. Ultramicroscopy 111:552–556

    Article  CAS  Google Scholar 

  121. Jiang CS, Noufi R, AbuShama JA, Ramanathan K, Moutinho HR, Pankow J, Al-Jassim MM (2004) Local built-in potential on grain boundary of Cu(In, Ga)Se2. Appl Phys Lett 84:3477

    Article  CAS  Google Scholar 

  122. Azulay D, Balberg I, Millo O (2012) Microscopic evidence for the modification of the electronic structure at grain boundaries of Cu(In1−x Ga x )Se2 films. Phys Rev Lett 108:076603

    Article  CAS  Google Scholar 

  123. Yan Y, Jiang CS, Noufi R, Huai Wei S, Moutinho HR, Al-Jassim MM (2007) Electrically benign behaviour of grain boundaries in polycrystalline CuInSe2 films. Phys Rev Lett 99:235504

    Article  CAS  Google Scholar 

  124. Mönig H, Smith Y, Caballero R, Kaufmann CA, Lauermann I, Lux-Steiner MCH, Sadewasser S (2010) Direct evidence for a reduced density of deep level defects at grain boundaries of Cu(In,Ga)Se2 thin films. Phys Rev Lett 105:116802

    Article  CAS  Google Scholar 

  125. Persson C, Zunger A (2003) Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. Phys Rev Lett 91:266401

    Article  CAS  Google Scholar 

  126. Zhang SB, Huai Wei S, Zunger A, Katayama-Yoshida H (1998) Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B 57:9642–9655

    Article  CAS  Google Scholar 

  127. Donolato C (1983) Theory of beam induced current characterisation of grain boundaries in polycrystalline solar cells. J Appl Phys 54:1314–1322

    Article  CAS  Google Scholar 

  128. Mendis BG, Bowen L, Jiang QZ (2010) A contactless method for measuring the re-combination velocity of an individual grain boundary in thin film photovoltaics. Appl Phys Lett 97:092112

    Article  CAS  Google Scholar 

  129. Corkish R, Puzzer T, Sproul AB, Luke KL (1998) Quantitative interpretation of electron beam induced current grain boundary contrast profiles with application to silicon. J Appl Phys 84:5473–5481

    Article  CAS  Google Scholar 

  130. Van Roosbroeck W (1955) Injected current carrier transport in a semi-infinite semiconductor and the determination of lifetimes and surface recombination velocities. J Appl Phys 26:380–391

    Article  Google Scholar 

  131. Watson CCR, Durose K (1993) Cathodoluminescence microscopy of bulk CdTe crystals. J Cryst Growth 126:325–329

    Article  CAS  Google Scholar 

  132. Mendis BG, Goodman MCJ, Major JD, Taylor AA, Durose K, Halliday DP (2012) The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material. J Appl Phys 112:124508

    Article  CAS  Google Scholar 

  133. Mendis BG, Bowen L (2011) Cathodoluminescence measurement of grain boundary recombination velocity in vapour grown p-CdTe. J Phys Conf Ser 326:012017

    Article  CAS  Google Scholar 

  134. Allen LJ, McBride W, O’Leary NL, Oxley MP (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100:91–104

    Article  CAS  Google Scholar 

  135. Bhattacharyya S, Koch CT, Rühle M (2006) Projected potential profiles across inter- faces obtained by reconstructing the exit face wavefunction from through focal series. Ultramicroscopy 106:525–538

    Article  CAS  Google Scholar 

  136. Abou-Ras D, Schmidt SS, Caballero R, Unold T, Werner Schock H, Koch CT, Schaffer B, Schaffer M, Pa Choi P, Cojocaru-Mirédin O (2012) Confined and chemically flexible grain boundaries in polycrystalline compound semiconductors. Adv Energy Mater 2:992–998

    Article  CAS  Google Scholar 

  137. Dunin-Borkowski RE (2000) The development of Fresnel contrast analysis and the interpretation of mean inner potential profiles at interfaces. Ultramicroscopy 83:193–216

    Article  CAS  Google Scholar 

  138. Dunin-Borkowski RE, Saxton WO (1997) The electrostatic contribution to the forward scattering potential at a space charge layer in high energy electron diffraction. II fringing fields. Acta Crystallogr A 53:242–250

    Article  Google Scholar 

  139. Oualid J, Singal CM, Dugas J, Crest JP, Amzil H (1984) Influence of illumination on the grain boundary recombination velocity in silicon. J Appl Phys 55:1195–1205

    Article  CAS  Google Scholar 

  140. Midgley PA, Weyland M (2003) 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431

    Article  CAS  Google Scholar 

  141. van Bavel SS, Loos J (2010) Volume organisation of polymer and hybrid solar cells as revealed by electron tomography. Adv Funct Mater 20:3217–3234

    Article  CAS  Google Scholar 

  142. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  143. Oosterhout SD, Wienk MM, van Bavel SS, Thiedmann R, Koster LJA, Gilot J, Loos J, Schmidt V, Janssen RAJ (2009) The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat Mater 8:818–824

    Article  CAS  Google Scholar 

  144. Hindson JC, Saghi Z, Hernandez-Garrido JC, Midgley PA, Greenham NC (2011) Morphological study of nanoparticle-polymer solar cells using high angle annular dark field electron tomography. Nano Lett 11:904–909

    Article  CAS  Google Scholar 

  145. van Bavel SS, Sourty E, de With G, Loos J (2009) Three dimensional nanoscale organisation of bulk heterojunction polymer solar cells. Nano Lett 9:507–513

    Article  CAS  Google Scholar 

  146. Brinkmann M, Wittmann JC (2006) Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer. Adv Mater 18:860–863

    Article  CAS  Google Scholar 

  147. Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40:1353–1362

    Article  CAS  Google Scholar 

  148. Herzing AA, Richter LJ, Anderson IM (2010) 3D nanoscale characterisation of thin film organic photovoltaic device structures via spectroscopic contrast in the TEM. J Phys Chem C 114:17501–17508

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budhika G. Mendis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, A.A., Mendis, B.G. (2014). Electron Microscopy of Thin Film Inorganic and Organic Photovoltaic Materials. In: Kumar, C. (eds) Transmission Electron Microscopy Characterization of Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38934-4_2

Download citation

Publish with us

Policies and ethics