Skip to main content

Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks

  • Chapter
  • First Online:
Compressed Sensing & Sparse Filtering

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Cognitive radio has become one of the most promising solutions for addressing the spectral under-utilization problem in wireless communication systems. As a key technology, spectrum sensing enables cognitive radios to find spectrum holes and improve spectral utilization efficiency. To exploit more spectral opportunities, wideband spectrum sensing approaches should be adopted to search multiple frequency bands at a time. However, wideband spectrum sensing systems are difficult to design, due to either high implementation complexity or high financial/energy costs. Sub-Nyquist sampling and compressed sensing play crucial roles in the efficient implementation of wideband spectrum sensing in cognitive radios. In this chapter, Sect. 6.1 presents the fundamentals of cognitive radios. A literature review of spectrum sensing algorithms is given in Sect. 6.2. Wideband spectrum sensing algorithms are then discussed in Sect. 6.3. Special attention is paid to the use of Sub-Nyquist sampling and compressed sensing techniques for realizing wideband spectrum sensing. Finally, Sect. 6.4 shows an adaptive compressed sensing approach for wideband spectrum sensing in cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McHenry MA (2005) NSF spectrum occupancy measurements project summary. Technical Report, Shared Spectrum Company

    Google Scholar 

  2. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  3. Akyildiz I, Lee W-Y, Vuran M, Mohanty S (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46(4):40–48

    Article  Google Scholar 

  4. Mitola J (2000) Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Department of Teleinformatics, Royal Institute of Technology Stockholm, Sweden, 8 May 2000

    Google Scholar 

  5. Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(13):2127–2159

    Article  MATH  Google Scholar 

  6. Ekram H, Bhargava VK (2007) Cognitive wireless communications networks. In: Bhargava VK (ed) Springer Publication, New York

    Google Scholar 

  7. Cabric D, Mishra SM, Brodersen RW (2004) Implementation issues in spectrum sensing for cognitive radios. Proc Asilomar Conf Signal Syst Comput 1:772–776

    Google Scholar 

  8. Sun H, Laurenson D, Wang C-X (2010) Computationally tractable model of energy detection performance over slow fading channels. IEEE Commun Lett 14(10):924–926

    Article  Google Scholar 

  9. Hossain E, Niyato D, Han Z (2009) Dynamic spectrum access and management in cognitive radio networks. Cambridge University Press, Cambridge

    Google Scholar 

  10. Tian Z, Giannakis GB (2006) A wavelet approach to wideband spectrum sensing for cognitive radios. In: Proceedings of IEEE cognitive radio oriented wireless networks and communications, Mykonos Island, pp 1–5

    Google Scholar 

  11. Proakis JG(2001) Digital communications, 4th edn. McGraw-Hill, New York

    Google Scholar 

  12. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130

    Article  Google Scholar 

  13. Tian Z, Giannakis GB (2007) Compressed sensing for wideband cognitive radios. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, Hawaii, April 2007, pp 1357–1360

    Google Scholar 

  14. Yoon M-H, Shin Y, Ryu H-K, Woo J-M (2010) Ultra-wideband loop antenna. Electron Lett 46(18): 1249–1251

    Google Scholar 

  15. Hao Z-C, Hong J-S (2011) Highly selective ultra wideband bandpass filters with quasi-elliptic function response. IET Microwaves Antennas Propag 5(9):1103–1108

    Article  Google Scholar 

  16. [Online]. Available: http://www.national.com/pf/DC/ADC12D1800.html

  17. Sun H, Chiu W-Y, Jiang J, Nallanathan A, Poor HV (2012) Wideband spectrum sensing with sub-Nyquist sampling in cognitive radios. IEEE Trans Sig Process 60(11):6068–6073

    Google Scholar 

  18. Venkataramani R, Bresler Y (2000) Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals. IEEE Trans Inf Theory 46(6):2173–2183

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao T (2005) An uncertainty principle for cyclic groups of prime order. Math Res Lett 12:121–127

    Article  MathSciNet  MATH  Google Scholar 

  20. Mishali M, Eldar YC (2009) Blind multiband signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process 57(3):993–1009

    Article  MathSciNet  Google Scholar 

  21. Feldster A, Shapira Y, Horowitz M, Rosenthal A, Zach S, Singer L (2009) Optical under-sampling and reconstruction of several bandwidth-limited signals. J Lightwave Technol 27(8):1027–1033

    Article  Google Scholar 

  22. Rosenthal A, Linden A, Horowitz M (2008) Multi-rate asynchronous sampling of sparse multi-band signals, arXiv.org:0807.1222

    Google Scholar 

  23. Fleyer M, Rosenthal A, Linden A, Horowitz M (2008) Multirate synchronous sampling of sparse multiband signals, arXiv.org:0806.0579

    Google Scholar 

  24. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Review, 43(1):129–159. [Online]. Available: http://www.jstor.org/stable/3649687

    Google Scholar 

  25. Polo YL, Wang Y, Pandharipande A, Leus G (2009) Compressive wide-band spectrum sensing. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, Taipei, pp 2337–2340

    Google Scholar 

  26. Tropp JA, Laska JN, Duarte MF, Romberg JK, Baraniuk R (2010) Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory 56(1):520–544

    Article  MathSciNet  Google Scholar 

  27. Mishali M, Eldar Y (2010) From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Top Signal Process 4(2):375–391

    Google Scholar 

  28. Needell D, Tropp J (2009) Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321 . [Online]. Available: http://www.sciencedirect.com/science/article/B6WB3-4T1Y404-1/2/a3a764ae1efc1bd0569dcde301f0c6f1

  29. Laska J, Kirolos S, Massoud Y, Baraniuk R, Gilbert A, Iwen M, Strauss M (2006) Random sampling for analog-to-information conversion of wideband signals. In: Proceedings of IEEE DCAS, pp 119–122

    Google Scholar 

  30. Laska JN, Kirolos S, Duarte MF, Ragheb TS, Baraniuk RG, Massoud Y (2007) Theory and implementation of an analog-to-information converter using random demodulation. Proc IEEE Int Symp Circ Syst ISCAS 2007(27–30):1959–1962

    Google Scholar 

  31. Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  32. Haupt J, Bajwa WU, Rabbat M, Nowak R (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101

    Article  Google Scholar 

  33. Quan Z, Cui S, Sayed AH, Poor HV (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans Signal Process 57(3):1128–1140

    Article  MathSciNet  Google Scholar 

  34. Ward R (2009) Compressed sensing with cross validation. IEEE Trans Inf Theory 55(12):5773–5782

    Article  Google Scholar 

  35. Boufounos P, Duarte M, Baraniuk R (2007) Sparse signal reconstruction from noisy compressive measurements using cross validation. In: Proceedings of IEEE/SP 14th workshop on statistical signal processing, Madison, pp 299–303

    Google Scholar 

  36. Chaudhari S, Koivunen V, Poor HV (2009) Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Trans Signal Process 57(7):2690–2700

    Article  MathSciNet  Google Scholar 

  37. Malioutov D, Sanghavi S, Willsky A (2010) Sequential compressed sensing. IEEE J Sel Top Signal Process 4(2):435–444

    Article  Google Scholar 

  38. Matousek J (2008) On variants of the Johnson-Lindenstrauss lemma. Random Struct Algor 33:142–156

    Article  MathSciNet  MATH  Google Scholar 

  39. Hazewinkel M (ed) (1987) Encyclopaedia of mathematics vol 1. Springer, New York

    Google Scholar 

Download references

Acknowledgments

H. Sun and A. Nallanathan acknowledge the support of the UK Engineering and Physical Sciences Research Council (EPSRC) with Grant No. EP/I000054/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Sun .

Editor information

Editors and Affiliations

Appendices

Appendix

Proof of Theorem 1

Using a variant of the Johnson-Lindenstrauss lemma as shown in Theorem 5.1 of [38], we have

$$\begin{aligned} \Pr \left[ (1 - \varepsilon )\Vert \mathbf x \Vert _2 \le \frac{ \Vert \varvec{\varPsi } \mathbf x \Vert _1}{\sqrt{2/\pi }\;r} \le (1 + \varepsilon )\Vert \mathbf x \Vert _2 \right] \ge 1 - \xi . \end{aligned}$$
(6.23)

Defining \(\mathbf x \stackrel{\triangle }{=}\mathbf F ^{-1} (\mathbf X -\hat{X}_p)\) in (6.23), we obtain

$$\begin{aligned} \Pr \bigg [ (1 - \varepsilon )\Vert \mathbf F ^{-1} (\mathbf X - \hat{X}_p)\Vert _2&\le \frac{ \Vert \varvec{\varPsi } \mathbf F ^{-1} (\mathbf X - \hat{X}_p) \Vert _1}{\sqrt{2/\pi }\;r} \nonumber \\&\le (1 + \varepsilon )\Vert \mathbf F ^{-1} (\mathbf X - \hat{X}_p)\Vert _2 \bigg ] \ge 1 - \xi . \end{aligned}$$
(6.24)

The above inequality can be rewritten by using (6.12) and (6.14)

$$\begin{aligned} \small \Pr \left[ (1 - \varepsilon )\Vert \mathbf F ^{-1} (\mathbf X - \hat{X}_p)\Vert _2 \le \sqrt{\frac{\pi }{2}} \rho _p \le (1 + \varepsilon )\Vert \mathbf F ^{-1} (\mathbf X - \hat{X}_p)\Vert _2 \right] \ge 1 - \xi . \end{aligned}$$
(6.25)

Applying Parseval’s relation to (6.25), we have

$$\begin{aligned} \Pr \left[ (1 - \varepsilon )\Vert \mathbf X - \hat{X}_p\Vert _2 \le \sqrt{\frac{\pi N}{2}}\rho _p \le (1 + \varepsilon )\Vert \mathbf X - \hat{X}_p\Vert _2 \right] \ge 1 - \xi . \end{aligned}$$
(6.26)

Thus, Theorem 1 follows.

Proof of Theorem 2

The best spectral approximation \(\mathbf X ^{\star }\) means that \( \Vert \mathbf X ^{\star }-\mathbf X \Vert _2\) is sufficiently small. Without loss of generality, we approximate \(\mathbf X ^{\star }\) by \(\mathbf X \). Thus, if \(\hat{X}_p\) is the best spectral approximation, the validation parameter can be rewritten by using (6.18)

$$\begin{aligned} \rho _p = \frac{\Vert \mathbf V - \varvec{\varPsi } \mathbf F ^{-1} \hat{X}_p \Vert _1}{r} = \frac{\Vert \mathbf n \Vert _1}{r} = \frac{\sum _{i = 1}^{r}|n^i |}{r}. \end{aligned}$$
(6.27)

As the measurement noise \(n^i \sim \mathcal CN (0, \delta ^2)\), its absolute value \(|n^i|\) follows the Rayleigh distribution with mean \(\sqrt{\frac{\pi }{2}}\delta \) and variance \(\frac{4-\pi }{2}\delta ^2\). Using the cumulative distribution function of the Rayleigh distribution, we have \(\Pr (|n^i| \le x)=1-\exp (-\frac{x^2}{2\delta ^2})\). Further, as the measurement noise level has an upper-bound \(\bar{n}\) in practice, there exists a sufficiently large parameter \(\nu \) that makes \(|n^i| \le \bar{n} \le (\nu +1)\sqrt{\frac{\pi }{2}}\delta \) almost surely. If we define a new variable \(D_i = |n^i|-\sqrt{\frac{\pi }{2}}\delta \), we obtain \(\mathbb E [D_i]=0\), \(\mathbb E [ D_i^2 ]=\frac{4-\pi }{2}\delta ^2\), and \(|D_i|\le \sqrt{\frac{\pi }{2}}\delta \nu \). Based on the Bernstein’s inequality [39], the following inequality holds

$$\begin{aligned} \Pr \left[ \left| \sum _{i = 1}^{r} D_i \right| >\varepsilon \right]&= \Pr \left[ \left| \sum _{i = 1}^{r} |n^i| - r \sqrt{\frac{\pi }{2}}\delta \right| >\varepsilon \right] \nonumber \\&\le \ 2\exp \left( -\frac{\varepsilon ^2/2}{ \sum _{i = 1}^r \mathbb E [ D_i^2 ] + \overline{D} \varepsilon /3}\right) \nonumber \\&\le \ 2\exp \left( -\frac{3\varepsilon ^2}{3(4 - \pi )r\delta ^2 + \sqrt{2\pi } \varepsilon \delta \nu }\right) \end{aligned}$$
(6.28)

where \(\overline{D}=\sqrt{\frac{\pi }{2}}\delta \nu \) denotes the upper-bound on \(|D_i|\).

Simply replacing \(\varepsilon \) by \(r\epsilon \) in (6.28) while using (6.27), we can rewrite (6.28) as

$$\begin{aligned} \Pr \left[ \left| \rho _p - \sqrt{\frac{\pi }{2}}\delta \right| > \epsilon \right] \le 2\exp \left( -\frac{3r\epsilon ^2}{3(4-\pi )\delta ^2+\sqrt{2\pi } \epsilon \delta \nu } \right) \!. \end{aligned}$$
(6.29)

Using (6.29), we end up with

$$\begin{aligned} \Pr \left[ \left| \rho _p - \sqrt{\frac{\pi }{2}}\delta \right| \le \epsilon \right] > 1- 2\exp \left( -\frac{3r\epsilon ^2}{3(4-\pi )\delta ^2+\sqrt{2\pi } \epsilon \delta \nu } \right) \!. \end{aligned}$$
(6.30)

To derive the required \(r\), we set the lower probability bound in (6.30) as

$$\begin{aligned} 1- 2\exp \left( -\frac{3r\epsilon ^2}{3(4-\pi )\delta ^2+\sqrt{2\pi } \epsilon \delta \nu } \right) =1-\varrho . \end{aligned}$$
(6.31)

Solving the above equation, we obtain

$$\begin{aligned} r=\ln \left( \frac{2}{\varrho }\right) \frac{3(4-\pi )\delta ^2+\sqrt{2\pi } \epsilon \delta \nu }{3\epsilon ^2}. \end{aligned}$$
(6.32)

This completes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, H., Nallanathan, A., Jiang, J. (2014). Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks. In: Carmi, A., Mihaylova, L., Godsill, S. (eds) Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38398-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38398-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38397-7

  • Online ISBN: 978-3-642-38398-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics