Skip to main content

11 Ectomycorrhiza-Specific Gene Expression

  • Chapter
  • First Online:
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Ectomycorrhiza (ECM) is an ecologically important interaction between woody plants and fungi, improving plant fitness and allowing the colonization of disturbed soils. In this interaction, nutrient transfer between both partners takes place, and adaptations to different soil habitats are known. During ECM development and functioning, ECM-specific tissues are formed associated with host signaling, resulting in changes in cell wall and cytoskeleton arrangement in both partners. The signaling processes involved in the mutually beneficial symbiosis can be investigated now on the basis of transcription analyses. This is summarized in the section ‘Genome-wide Expression Profiling’. In addition, ECM carbon, nitrogen and amino acid metabolism, phosphorous and water supply through ECM, as well as host and soil specificity are covered. In a separate section, examples for genetic modifications as tools for functional gene analyses are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustiliniforme. New Phytol 103:507–514

    CAS  Google Scholar 

  • Agerer R (1987/2002) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae – a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Google Scholar 

  • Ashford AE, Ryde S, Barrow KD (1994) Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implicationsfor phosphorus transport. New Phytol 126:239–247

    CAS  Google Scholar 

  • Asiimwe T, Krause K, Schlunk I, Kothe E (2012) Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza 22:471–484

    PubMed  CAS  Google Scholar 

  • Barker SJ, Tagu D, Delp G (1998) Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol 116:1201–1207

    CAS  Google Scholar 

  • Barrett V, Lemke PA, Dixon RK (1989) Protoplast formation from selected species of ectomycorrhizal fungi. Appl Microbiol Biotechnol 30:381–387

    Google Scholar 

  • Barrett V, Dixon RK, Lemke PA (1990) Genetic transformation of a mycorrhizal fungus. Appl Microbiol Biotechnol 33:313–316

    CAS  Google Scholar 

  • Beguiristain T, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytol 136(3):525–532

    CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    PubMed  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174(1):151–158

    PubMed  CAS  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101(11):1348–1354

    CAS  Google Scholar 

  • Benjdia M, Rikirsch E, Müller T, Morel M, Corratge C, Zimmermann S, Chalot M, Frommer WB, Wipf D (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tri-peptide transporters (HcPTR2A and B). New Phytol 170:401–410

    PubMed  CAS  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    PubMed  CAS  Google Scholar 

  • Brunner I (2001) Ectomycorrhizas: their rhole in forest ecosystems under the impact of acidifying pollutants. Perspect Plant Ecol 4(1):13–27

    Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14(13):3206–3214

    PubMed  CAS  Google Scholar 

  • Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 Gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    PubMed  CAS  Google Scholar 

  • Burke RM, Cairney JWG (1997) Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid-state fermentation conditions. Mycol Res 101(9):1135–1139

    CAS  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135

    Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    PubMed  CAS  Google Scholar 

  • Charvet-Candela V, Hitchin S, Ernst D, Sandermann H, Marmeisse R, Gay G (2002) Characterization of an Aux/IAA cDNA upregulated in Pinus pinaster roots in response to colonization by the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol 154(3):769–777

    CAS  Google Scholar 

  • Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99(2):161–174

    PubMed  CAS  Google Scholar 

  • Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 157–173

    Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70(12):7413–7417

    PubMed  CAS  Google Scholar 

  • Courty PE, Buée M, Diedhou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem. doi:10.1016/j.soilbio.2009.12.006

    Google Scholar 

  • Couturier J, Fay E, Fitz M, Wipf D, Blaudez D, Chalot M (2010) PtAAP11, a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. J Exp Bot 61(6):1671–1682

    PubMed  CAS  Google Scholar 

  • Cromack K, Sollins P, Granstein WC (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    CAS  Google Scholar 

  • da Silva Coelho I, de Queiroz MV, Costa MD, Kasuya MCM, de Araújo EF (2010) Identification of differentially expressed genes of the fungus Hydnangium sp. during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis. Mycorrhiza 20:531–540

    PubMed  Google Scholar 

  • Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180(2):379–390

    PubMed  CAS  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144:199–205

    CAS  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globus and Pisolithus microcarpus. New Phytol 165:599–611

    PubMed  CAS  Google Scholar 

  • Fajardo Lopez M, Dietz S, Grunze N, Bloschies J, Weiss M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil growing hyphae. New Phytol 180:365–378

    Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151(4):1991–2005

    PubMed  CAS  Google Scholar 

  • Finlay RD, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen M (ed) Mycorrhiza functioning. Chapman and Hall, London, pp 134–160

    Google Scholar 

  • Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Fries N, Serck-Hanssen K, Häll Dimberg L, Theander O (1987) Abietic acid an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus (Boletaceae). Exp Mycol 11:360–363

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria – a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210

    Google Scholar 

  • Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter- and intraspecific variability in the homo- and dikaryotic mycelia. Appl Microbiol Biotechnol 26:141–146

    CAS  Google Scholar 

  • Gay G, Normand L, Marmeisse R, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnési have increased mycorrhiza activity. New Phytol 128:645–657

    CAS  Google Scholar 

  • Gea L, Normand L, Vian B, Gay G (1994) Structural aspects of ectomycorrhiza of Pinus pinaster (Ait.) Sol. formed by an IAA-overproducer mutant of Hebeloma cylindrosporum Romagnési. New Phytol 128:659–670

    Google Scholar 

  • Gherghel F, Krause K (2012) Role of mycorrhiza in re-forestation at heavy metal-contaminated sites. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils, vol 31, Soil biology. Springer, Berlin, pp 183–199

    Google Scholar 

  • Gorfer M, Tarkka MT, Hanif M, Pardo AG, Laitiainen E, Raudaskoski M (2001) Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovines. Mol Plant Microbe Interact 14(2):135–144

    PubMed  CAS  Google Scholar 

  • Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009) Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycol Res 113:1377–1388

    PubMed  CAS  Google Scholar 

  • Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P (2005) Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 48(1):69–74

    PubMed  CAS  Google Scholar 

  • Grunze N, Willmann M, Nehls U (2004) The impact of ectomycorrhiza formation on monosaccaride transporter gene expression on poplar roots. New Phytol 164:147–155

    CAS  Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290

    CAS  Google Scholar 

  • Hall JL (2001) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    PubMed  CAS  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of C-14-labeled lignin and dehydropolymer of coni-feryl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153(4):352–354

    CAS  Google Scholar 

  • Hebraud M, Fevre M (1988) Protoplast production and regeneration from mycorrhizal fungi and their use for isolation of mutants. Can J Microbiol 34:157–161

    Google Scholar 

  • Heller G, Adomas A, Li GS, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8(19). doi:10.1186/1471-2229-8-19

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407(6803):506–508

    PubMed  CAS  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23:205–212

    PubMed  CAS  Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism; the key to ectomycorrhizal formation? New Phytol 116:297–301

    CAS  Google Scholar 

  • Jacob C, Courbot M, Brun A (2001) Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur J Biochem 268:3223–3232

    PubMed  CAS  Google Scholar 

  • Jacob C, Courbot ML, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576(3):423–427

    PubMed  CAS  Google Scholar 

  • Jambois A, Dauphin A, Kawano T, Ditengou FA, Bouteau F, Legue V, Lapeyrie F (2005) Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to regulate ontogenesis. Physiol Plant 123(2):120–129

    CAS  Google Scholar 

  • Jargeat P, Gay G, Debaud JC, Marmeisse R (2000) Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Mol Gen Genet 263:948–956

    PubMed  CAS  Google Scholar 

  • Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199–205

    PubMed  CAS  Google Scholar 

  • Javelle A, Andre B, Marini AM, Chalot M (2003a) High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol 11:53–55

    PubMed  CAS  Google Scholar 

  • Javelle A, Morel M, Rodriguez-Pastrana BR, Botton B, Andre B, Marini AM, Brun A, Chalot M (2003b) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP–GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47:411–430

    PubMed  CAS  Google Scholar 

  • Javelle A, Chalot M, Brun A, Botton B (2004) Nitrogen transport and metabolism in mycorrhizal fungi and mycorrhizas. In: Varma A, Abbot L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 393–429

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Johansson T, Le Quere A, Ahren D, Soderstrom B, Erlandsson R, Lundeberg J, Uhlen M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17(2):202–215

    PubMed  Google Scholar 

  • Kemppainen MJ, Pardo AG (2010) pHg/pSILBA gamma vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA-triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 3:178–200

    PubMed  Google Scholar 

  • Kothe E, Muller D, Krause K (2002) Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J Appl Bot 76:127–132

    Google Scholar 

  • Kottke I, Oberwinkler F (1986) Mycorrhiza of forest trees – structure and function. Trees 1:1–24

    Google Scholar 

  • Krause K (2005) Wirtsspezifität und spezifische Genexpression in Mykorrhiza-Pilzen der Gattung Tricholoma. Dissertation, Jena

    Google Scholar 

  • Krause K, Kothe E (2006) Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J Basic Microbiol 46(5):387–399

    PubMed  CAS  Google Scholar 

  • Kropp BR, Fortin JA (1986) Formation and regeneration of protoplasts from the ectomycorrhizal basidiomycete Laccaria bicolor. Can J Bot 64:1224–1226

    Google Scholar 

  • Kuga-Uetake Y, Purich M, Massicotte HB, Peterson RL (2004) Host microtubules in the Hartig net region of ectomycorrhizas, ectendomycorrhizas, and monotropoid mycorrhizas. Can J Bot 82(7):938–946

    Google Scholar 

  • Küster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick AM, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Pühler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 68:19–32

    PubMed  Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentration. New Phytol 149(2):349–355

    CAS  Google Scholar 

  • Le Quere A, Johansson T, Tunlid A (2002) Size and complexity of the nuclear genome of the ectomycorrhizal fungus Paxillus involutus. Fungal Genet Biol 36:234–241

    PubMed  Google Scholar 

  • Le Quere A, Wright DP, Soderstrom B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) fr. Mol Plant Microbe Interact 18(7):659–673

    PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90

    PubMed  Google Scholar 

  • Lei J, Dexheimer J (1988) Ultrastructural localisation of ATPase activity in Pinus sylvestris/Laccaria laccata mycorrhizal association. New Phytol 108:329–334

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153

    CAS  Google Scholar 

  • Loth-Pereda V, Orsini E, Courty P-E, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–2154

    PubMed  CAS  Google Scholar 

  • Louche J, Ali MA, Cloutier-Hurteau B, Sauvage F-X, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73(2):323–335

    PubMed  CAS  Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla invitro. New Phytol 4:627–631

    Google Scholar 

  • Mankel A, Krause K, Genenger M, Kost G, Kothe E (2000) A hydrophobin accumulated in the Hartig’ net of ectomycorrhiza formed between Tricholoma terreum and its compatible host tree is missing in an incompatible association. J Appl Bot 74:95–99

    Google Scholar 

  • Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68(3):1408–1413

    PubMed  CAS  Google Scholar 

  • Mann BJ, Bowman BJ, Grotelueschen J, Metzenberg RL (1989) Nucleotide sequence of pho-4+, encoding phosphate-repressible phosphate permease of Neurospora crassa. Gene 83:281–289

    PubMed  CAS  Google Scholar 

  • Marjanović Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005a) Aquaporins in poplar: what a difference a symbiont makes! Planta 222(2):258–268

    PubMed  Google Scholar 

  • Marjanović Z, Nehls U, Hampp R et al (2005b) Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. In: Biophysics from molecules to brain: in memory of Radoslav K. Andjus, vol 1048. New York Academy of Sciences, New York, pp 496–499

    Google Scholar 

  • Marmeisse R, Gay G, Debaud JC, Casselton LA (1992) Genetic transformation of the symbiontic basidiomycete fungus Hebeloma cylindrosporum. Curr Genet 22(1):41–45

    PubMed  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12(4):508–515

    PubMed  CAS  Google Scholar 

  • Martin F, Laurent P, de Carvalho D, Voiblet C, Balestrini R, Bonfante P, Tagu D (1999) Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: Identification, function, and expression in symbiosis. Fungal Genet Biol 27:161–174

    PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10(2):204–210

    PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183):88–92

    PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    PubMed  CAS  Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na + −coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    PubMed  CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    PubMed  CAS  Google Scholar 

  • Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic, New York, pp 79–105

    Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48(1):1–17

    PubMed  CAS  Google Scholar 

  • Mishra NC, Tatum EL (1973) Non-mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Natl Acad Sci USA 70:3875–3879

    PubMed  CAS  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specifity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D (2006) Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16(6):437–442

    PubMed  Google Scholar 

  • Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68(1):41–51

    PubMed  Google Scholar 

  • Nehls U, Wiese A, Guttenberger M, Hampp R (1998) Carbon allocation in etomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant Microbe Interact 11:167–176

    PubMed  CAS  Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144:343–349

    CAS  Google Scholar 

  • Nehls U, Bock A, Ecke M, Hampp R (2001a) Differential expression of the hexose-regulated fungal genes amPAL and amMst1 within Amanita/Populus ectomycorrhizas. New Phytol 150:583–589

    CAS  Google Scholar 

  • Nehls U, Bock A, Einig W, Hampp R (2001b) Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747

    CAS  Google Scholar 

  • Nehls U, Göhringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12(2):292–301

    PubMed  CAS  Google Scholar 

  • Ohta A (1998) Fruit-body production of two ectomycorrhizal fungi in the genus Hebeloma in pure culture. Mycoscience 39:15–19

    Google Scholar 

  • Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artifact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173:91–102

    CAS  Google Scholar 

  • Pardo AG, Hanif M, Raudaskoski M, Gorfer M (2002) Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 106:132–137

    CAS  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Varma A, Bonfante P (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:557–568

    Google Scholar 

  • Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F (2003) Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytol 159(1):117–129

    CAS  Google Scholar 

  • Pfeffer PE, Bago B, Sachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553

    CAS  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    PubMed  CAS  Google Scholar 

  • Plassard C, Scheromm P, Mousain D, Salsac L (1991) Assimilation of mineral nitrogen and ion balance in the two partners of ectomycorrhizal symbiosis: data and hypothesis. Experientia 47:340–349

    CAS  Google Scholar 

  • Plassard C, Barry D, Eltrop L, Mousain D (1994) Nitrate uptake in maritime pine (Pinus pinaster) and the ectomycorrhizal fungus Hebeloma cylindrosporum – effect of ectomycorrhizal symbiosis. Can J Bot 72:189–197

    Google Scholar 

  • Plett JM, Gibon J, Kohler A, Duffy K, Hoegger PJ, Velagapudi R, Han J, Kües U, Grigoriev IV, Martin F (2012) Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet Biol 49(3):199–209

    PubMed  CAS  Google Scholar 

  • Rekangalt D, Verner MC, Kües U, Walser PJ, Marmeisse R, Debaud JC, Fraissinet-Tachet L (2007) Green fluorescent protein expression in the symbiotic basidiomycete fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 268(1):67–72

    PubMed  CAS  Google Scholar 

  • Rodríguez-Tovar AV, Ruiz-Medrano R, Herrera-Martínez A, Barrera-Figueroa BE, Hidalgo-Lara ME, Reyes-Márquez BE, Cabrera-Ponce JL, Valdés M, Xoconostle-Cázares B (2005) Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods 63(1):45–54

    PubMed  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37

    PubMed  CAS  Google Scholar 

  • Rousseau JVD, Reid CPP (1991) Effects of phosphorus and ectomycorrhizas on the carbon balance of loblolly pine seedlings. Forest Sci 36:101–112

    Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilzation of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustiliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104:439–445

    CAS  Google Scholar 

  • Sanmee R, Lumyong P, Dell B, Lumyong S (2010) In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand. Mycoscience 51:15–22

    Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52(2):77–85

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biol Biochem 19:231–236

    Google Scholar 

  • Tagu D, Martin F (1995) Expressed sequence tags of randomly selected cDNA clones from Eucalyptus globusPisolithus tinctorius ectomycorrhizae. Mol Plant Microbe Interact 8:781–783

    PubMed  CAS  Google Scholar 

  • Tagu D, Python M, Crétin C, Martin F (1993) Cloning symbiosis related cDNAs from eucalypt ectomycorrhizas by PCR-assisted differential screening. New Phytol 125:339–343

    CAS  Google Scholar 

  • Tagu D, Nasse B, Martin F (1996) Cloning and characterization of hydrophobins-encoding cDNAs from the ectomycorrhizal Basidiomycete Pisolithus tinctorius. Gene 168(1):93–97

    PubMed  CAS  Google Scholar 

  • Tagu D, De Bellis R, Balestrini R, De Vries OMH, Piccoli G, Stocchi V, Bonfante P, Martin F (2001) Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytol 149(1):127–135

    CAS  Google Scholar 

  • Tagu D, Lapeyrie F, Martin F (2002) The ectomycorrhizal symbiosis: genetics and development. Plant Soil 244(1–2):97–105

    CAS  Google Scholar 

  • Tarkka MT, Vasara R, Gorfer M, Raudaskoski M (2000) Molecular characterization of actin genes from homobasidiomycetes: two different actin genes from Schizophyllum commune and Suillus bovinus. Gene 251(1):27–35

    PubMed  CAS  Google Scholar 

  • Tatry M-V, El Kassis E, Lambilliotte R, Corratgé C, Van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    PubMed  CAS  Google Scholar 

  • Terpitz U, Kothe E (2006) Diversity and adaptation of soil fungi in an ecosystem with contamination originating form a phosphate fertilizer plant. J Appl Bot Food Qual 80:187–193

    CAS  Google Scholar 

  • Timonen S, Peterson L (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244:199–210

    CAS  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28(4):538–606

    Google Scholar 

  • Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082

    CAS  Google Scholar 

  • Varma A, Bonfante P (1994) Utilization of cell-wall related carbohydrates by ericoid mycorrhizal endophytes. Symbiosis 16(3):301–313

    CAS  Google Scholar 

  • Versaw WK (1995) A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene 153:135–139

    PubMed  CAS  Google Scholar 

  • Weiss M, Mikolajewski S, Peipp H, Schmitt U, Schmidt J, Wray V, Strack D (1997) Tissue-specific and development-dependent accumulation of phenylpropanoids in Larch mycorrhizas. Plant Physiol 114:15–27

    PubMed  CAS  Google Scholar 

  • Wiemken V, Boller T (2002) Ectomycorrhiza: gene expression, metabolism and the wood-wide web. Curr Opin Plant Biol 5(4):355–361

    PubMed  CAS  Google Scholar 

  • Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet 51(2):71–78

    PubMed  CAS  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    PubMed  CAS  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula (Batsch) Fr. Plant Cell Environ 23:39–49

    CAS  Google Scholar 

  • Wright DP, Johansson T, Le Quere A, Soderstrom B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167(2):579–596

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Jena School for Microbial Communication, RTG 1257 by DFG, Max Planck Society va IMPRS and ILRS by Leibniz Association for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Kothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kothe, E., Schlunk, I., Senftleben, D., Krause, K. (2013). 11 Ectomycorrhiza-Specific Gene Expression. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_11

Download citation

Publish with us

Policies and ethics