Skip to main content

A Theory of Disclination and Dislocation Fields for Grain Boundary Plasticity

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

  • 1066 Accesses

Abstract

A continuum mechanics model is introduced for a core and structure sensitive modeling of grain boundary mediated plasticity. It accounts for long range elastic strain and curvature incompatibilities due to the presence of dislocation and disclination densities. The coupled spatio-temporal evolution of the crystal defects is also accounted for by transport equations. Based on atomistic structures, copper tilt boundaries are modeled with periodic sequences of wedge disclination dipoles. Their self-relaxation by transport leads to grain boundary configurations with lower elastic energies, which are compared to molecular statics values. The characteristic internal length inherent to strain gradient elasticity, which relates the elastic energy weight of couple-stresses to that of stresses, is chosen to retrieve the elastic energy obtained by atomistic simulations. This length is found to be lower than interatomic distances. In agreement with atomistic modeling, couple-stress elasticity is thought to be relevant for the modeling of highly heterogeneous defect microstructures at atomic resolution scales only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is found from Frank’s formula that the separation distance \(\displaystyle l\) between the edge dislocations in a dislocation-made tilt boundary of misorientation \(\displaystyle 46.40^{\circ }\) is \(\displaystyle l = 0.34\,nm\), a distance much too short to be realistic. Such a result supports the view that a consistent description of high-angle tilt boundaries should recourse to disclination dipole walls rather than edge dislocation walls.

References

  1. Wang, Y.M., Ma, E.: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mat. Sci. Eng. A 375–377, 46 (2004)

    Article  Google Scholar 

  2. Cahn, J.W., Mishin, Y., Suzuki, A.: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006)

    Article  Google Scholar 

  3. Gorkaya, T., Molodov, D.A., Gottstein, G.: Stress-driven migration of symmetrical %3c001%3e tilt grain boundaries in Al bicrystals. Acta Mater. 57, 5396 (2009)

    Article  Google Scholar 

  4. Mompiou, F., Caillard, D., Legros, M.: Grain boundary shear-migration coupling. I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198 (2009)

    Article  Google Scholar 

  5. Tschopp, M.A., Tucker, G.J., McDowell, D.L.: Atomistic simulations of tension-compression asymmetry in dislocation nucleation for copper grain boundaries. Comp. Mater. Science 44, 351 (2008)

    Article  Google Scholar 

  6. Tschopp, M.A., McDowell, D.L.: Grain boundary dislocation sources in nanocrystalline copper. Scripta Mater. 58, 299 (2008)

    Article  Google Scholar 

  7. Van Swygenhoven, H., Derlet, P.M., Froseth, A.G.: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54, 1975 (2006)

    Article  Google Scholar 

  8. Van Swygenhoven, H.: Footprints of plastic deformation in nanocrystalline metals. Mat. Sci. Eng. A 483–484, 33 (2008)

    Article  Google Scholar 

  9. Sutton, A.P., Vitek, V.: On the structure of tilt grain boundaries in cubic metals. I. Symmetrical tilt boundaries. Philos. Trans. R. Soc. Lond. A309, 1 (1983)

    Google Scholar 

  10. Bilby, B.A.: Types of dislocation source. In: Bristol Conference Report on Defects in Crystalline Solids, p. 124. The Physical Society, London (1955)

    Google Scholar 

  11. Frank, F.C.: The resultant content of dislocations in an arbitrary intercrystalline boundary. In: Symposium on The Plastic Deformation of Crystalline Solids, p. 150. Mellon Institute, Pittsburgh, (NAVEXOS-P-834) (1950)

    Google Scholar 

  12. Li, J.C.M.: Disclination model of high angle grain boundaries. Surf. Sci. 31, 12 (1972)

    Article  Google Scholar 

  13. Shih, K.K., Li, J.C.M.: Energy of grain boundaries between cusp misorientations. Surf. Sci. 50, 109 (1975)

    Article  Google Scholar 

  14. Gertsman, VYu., Nazarov, A.A., Romanov, A.E., Valiev, R.Z., Vladimirov, V.I.: Disclination-structural unit model of grain boundaries. Philos. Mag. A 59, 1113 (1989)

    Google Scholar 

  15. Gurtin, M.E., Anand, L.: Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple junction. J. Mech. Phys. Solids 56, 184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Warner, D.H., Sansoz, F., Molinari, J.F.: Atomistic based continuum investigation of plastic deformation in nanocrystalline copper. Int. J. Plast. 22, 754–774 (2006)

    Article  MATH  Google Scholar 

  17. Wei, Y.J., Anand, L.: Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J. Mech. Phys. Solids 52, 2587 (2004)

    Article  MATH  Google Scholar 

  18. Wei, Y., Gao, H., Bower, A.F.: Numerical simulations of crack deflection at a twist-misoriented grain boundary between two ideally brittle crystals. J. Mech. Phys. Solids 57, 1865 (2009)

    Article  Google Scholar 

  19. Zbib, H.M., Overman, C.T., Akasheh, F., Bahr, D.: Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27, 1618–1639 (2011)

    Article  MATH  Google Scholar 

  20. Tucker, G.J., Tschopp, M.A., McDowell, D.L.: Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater. 58, 6464 (2010)

    Article  Google Scholar 

  21. Fressengeas, C., Taupin, V., Capolungo, L.: An elasto-plastic theory of dislocation and disclination fields. Int. J. Solids Struct. 48, 3499–3509 (2011)

    Article  Google Scholar 

  22. Romanov, A.E., Vladimirov, V.I.: Disclinations in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 9, p. 191. Elsevier, Amsterdam (1992)

    Google Scholar 

  23. Fressengeas, C., Taupin, V., Capolungo, L., Upadhyay, M.: Tangential continuity of elastic/plastic curvature and strain at interfaces. Int. J. Solids Struct. 49, 2660–2667 (2012)

    Article  Google Scholar 

  24. Taupin, V., Capolungo, L., Fressengeas, C., Das, A., Upadhyay, M.: Grain boundary modeling using a theory of disclination and dislocation fields. J. Mech. Phys. Solids. 61, 370 (2013)

    Google Scholar 

  25. deWit, R.: Linear theory of static disclinations. In: Simmons, J.A., deWit, R., Bullough, R. (eds.) Fundamental aspects of dislocation theory, (Nat. Bur. Stand.) vol. I, pp. 651–673. Special Publications 317, US (1970)

    Google Scholar 

  26. Acharya, A.: A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49, 761 (2001)

    Article  MATH  Google Scholar 

  27. Beausir, B., Fressengeas, C.: Disclination densities from EBSD orientation mapping. Int. J. Solids Struct. 50, 137 (2013)

    Google Scholar 

  28. Upadhyay, M., Capolungo, L., Taupin, V., Fressengeas, C.: Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations. Philos. Mag. (2012). http://dx.doi.org/10.1080/14786435.2012.733829

  29. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu, J.Y., King, W.E., Fleck, N.A.: Finite elements for materials with strain gradient effects. Int. J. Numer. Meth. Engng. 44, 373 (1999)

    Article  MATH  Google Scholar 

  31. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids. Struc. 48, 2496–2510 (2011)

    Article  Google Scholar 

  32. Kleman, M., Friedel, J.: Disclinations, dislocations, and continuous defects: a reappraisal. Rev. Modern Phys. 80, 61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spearot, D.: Atomistic calculations of nanoscale interface behavior in FCC metals. Ph.D. thesis, Georgia Institute of Technology (2005)

    Google Scholar 

  34. Varadhan, S., Beaudoin, A.J., Acharya, A., Fressengeas, C.: Dislocation transport using an explicit Galerkin/least-squares formulation. Modell. Simul. Mater. Sci. Eng. 14, 1 (2006)

    Article  Google Scholar 

  35. Bachurin, D.V., Murzaev, R.T., Nazarov, A.A.: Atomistic computer and disclination simulation of $[$001$]$ tilt boundaries in nickel and copper. Phys. Met. Metall. 96, 555 (2003)

    Google Scholar 

  36. Upadhyay, M., Capolungo, L., Taupin, V., Fressengeas, C.: Grain boundary and triple junction energies in crystalline media: a disclination based approach. Int. J. Solids. Struc. 48, 3176–3193 (2011)

    Article  Google Scholar 

  37. Marangantia, R., Sharma, P.: A novel atomistic approach to determine strain gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors benefited of financial support from the ANR (Agence Nationale de la Recherche) under grant ANR-11-JS09-007-01, NanoMec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Taupin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taupin, V., Capolungo, L., Fressengeas, C., Das, A., Upadhyay, M. (2013). A Theory of Disclination and Dislocation Fields for Grain Boundary Plasticity. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_18

Download citation

Publish with us

Policies and ethics