Skip to main content

Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information

  • Conference paper
Book cover Machine Learning and Interpretation in Neuroimaging

Abstract

The goal of many functional Magnetic Resonance Imaging (fMRI) studies is to infer neural activity from hemodynamic signals. Classical fMRI analysis approaches assume a canonical hemodynamic response function (HRF), which is identical in every voxel. Canonical HRFs imply space-time separability. Many studies explored the relevance of non-separable HRFs. These studies were focusing on the relationship between stimuli or electroencephalographic data and fMRI data. It is not clear from these studies whether non-separable spatiotemporal dynamics of fMRI signals contain neural information. This study provides direct empirical evidence that non-separable spatiotemporal deconvolutions of multivariate fMRI time series predict intracortical neural signals better than standard canonical HRF models. Our results demonstrate that there is more neural information in fMRI signals than detected by most analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, G.K., Zarahn, E., D’Esposito, M.: The variability of human BOLD hemodynamic responses. Neuroimage 8(4), 360–369 (1998)

    Article  Google Scholar 

  2. Berwick, J., Johnston, D., Jones, M., Martindale, J., Martin, C., Kennerley, A.J., Redgrave, P., Mayhew, J.E.W.: Fine detail of neurovascular coupling revealed by spatiotemporal analysis of the hemodynamic response to single whisker stimulation in rat barrel cortex. Journal of Neurophysiology 99(2), 787–798 (2008)

    Article  Google Scholar 

  3. Bießmann, F., Meinecke, F.C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N.K., Müller, K.-R.: Temporal kernel CCA and its application in multimodal neuronal data analysis. Machine Learning Journal 79(1-2), 5–27 (2010)

    Article  MathSciNet  Google Scholar 

  4. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.-R.: Single-trial analysis and classification of ERP components–a tutorial. Neuroimage 56(2), 814–825 (2011)

    Article  Google Scholar 

  5. Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, 220–233 (2004)

    Article  Google Scholar 

  6. Chu, C., Mourão-Miranda, J., Chiu, Y.-C., Kriegeskorte, N., Tan, G., Ashburner, J.: Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Neuroimage 58(2), 560–571 (2011)

    Article  Google Scholar 

  7. Devor, A., Ulbert, I., Dunn, A.K., Narayanan, S.N., Jones, S.R., Andermann, M.L., Boas, D.A., Dale, A.M.: Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc. Natl. Acad. Sci. USA 102(10), 3822–3827 (2005)

    Article  Google Scholar 

  8. Friston, K.J., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Human Brain Mapping 1, 153–171 (1994)

    Article  Google Scholar 

  9. Glover, G.H.: Deconvolution of impulse response in event-related bold fMRI. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  10. Hardoon, D.R., Mourão-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fMRI data using kernel canonical correlation. Neuroimage 37(4), 1250–1259 (2007)

    Article  Google Scholar 

  11. Haxby, J.V., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425 (2001)

    Article  Google Scholar 

  12. Hollander, M., Wolfe, D.: Nonparametric statistical methods. John Wiley & Sons, Inc. (1999)

    Google Scholar 

  13. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3), 321–377 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proceedings of the National Academy of Sciences 103(10), 3863 (2006)

    Article  Google Scholar 

  15. Lange, N., Strother, S.C., Anderson, J.R., Nielsen, F.A., Holmes, A.P., Kolenda, T., Savoy, R., Hansen, L.K.: Plurality and resemblance in fMRI data analysis. Neuroimage 10(3 Pt 1), 282–303 (1999)

    Article  Google Scholar 

  16. Leopold, D.A., Murayama, Y., Logothetis, N.K.: Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 1–12 (2003)

    Google Scholar 

  17. Logothetis, N.K., Pauls, J., Augath, M.A., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150–157 (2001)

    Article  Google Scholar 

  18. Lu, Y., Grova, C., Kobayashi, E., Dubeau, F., Gotman, J.: Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model. Neuroimage 34(1), 195–203 (2007)

    Article  Google Scholar 

  19. Martindale, J., Mayhew, J., Berwick, J., Jones, M., Martin, C., Johnston, D., Redgrave, P., Zheng, Y.: The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab. 23(5), 546–555 (2003)

    Article  Google Scholar 

  20. Mourão-Miranda, J., Friston, K.J., Brammer, M.: Dynamic discrimination analysis: a spatial-temporal SVM. Neuroimage 36(1), 88–99 (2007)

    Article  Google Scholar 

  21. Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  22. Murayama, Y., Bießmann, F., Meinecke, F.C., Müller, K.-R., Augath, M.A., Oeltermann, A., Logothetis, N.K.: Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magnetic Resonance Imaging 28(8), 1095–1103 (2010)

    Article  Google Scholar 

  23. Shmuel, A., Yacoub, E., Chaimow, D., Logothetis, N.K., Ugurbil, K.: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 tesla. Neuroimage 35(2), 539–552 (2007)

    Article  Google Scholar 

  24. Strang, G.: Introduction to linear algebra. Wellesley-Cambridge Press (2009)

    Google Scholar 

  25. Yacoub, E., Ugurbil, K., Harel, N.: The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. J. Cereb. Blood Flow Metab. 26(5), 634–644 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bießmann, F., Murayama, Y., Logothetis, N.K., Müller, KR., Meinecke, F.C. (2012). Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics