Skip to main content

The Egenhofer–Cohn Hypothesis or, Topological Relativity?

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

In this chapter, we provide an overview of research on cognitively validating qualitative calculi, focusing on the region connection calculus (RCC) and Egenhofer’s intersection models (IM). These topological theories are often claimed to be foundational to spatial cognition, a concept we term the EgenhoferCohn Hypothesis. (The authors are aware of the limitations of the chosen title/term. Neither Egenhofer nor Cohn necessarily support this claim in a strong form but they kindly agreed to have their names used here. Additionally, there are other approaches to topology, Cohn is the third author on the classic RCC paper, and Egenhofer published his work with co-authors. However, we feel that these two names best summarize the two most prominent topological theories in the spatial sciences.) We have been particularly interested in extending existing approaches into the realm of spatio-temporal representation and reasoning. We provide an overview on a series of experiments that we conducted to shed light on geographic event conceptualization and topology’s role in modeling and explaining cognitive behavior. Our framework also incorporates approaches to visually analyze cognitive behavior, allowing for interactive and in-depth analyses of cognitive conceptualizations. We present tangible results that can be distilled from generalizing from several experiments. These results show that the strong version of the Egenhofer–Cohn Hypothesis is not supported by all results; we suggest amendments to topological relationship specifications that are needed to serve as a sufficient basis for bridging formal and observed human spatial cognitive processes. We term this approach topological relativity.

This research is funded through the National Science Foundation (#0924534).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For an example how artificial agents provide insights into cognitive agents see, for example, Braitenberg (1984) and the growing body of literature on agent based modeling.

References

  • Abler R, Adams JS, Gould P (1971) Spatial organization: the geographer’s view of the world. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Alexandroff P (1961) Elementary concepts of topology. Dover Publications, New York

    Google Scholar 

  • Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843

    Article  Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59:617–645

    Article  Google Scholar 

  • Braitenberg V (1984) Vehicles. Experiments in synthetic psychology. MIT Press, Cambridge

    Google Scholar 

  • Bruns HT, Egenhofer MJ (1996) Similarity of spatial scenes. In: Kraak MJ, Molenaar M (eds) Seventh international symposium on spatial data handling (SDH’96), Delft, The Netherland. Taylor & Francis, London and New York, pp 173–184

    Google Scholar 

  • Chater N (1999) The search for simplicity: a fundamental cognitive principle. Q J Exp Psychol 52A(2):273–302

    Google Scholar 

  • Clementini E, Di Felice P, van Oosterom P (1993) A small set of formal topological relationships suitable for end-user interaction. In: Abel D, Ooi BC (eds) Advances in spatial databases. Proceedings of the third international symposium, SSD ‘93 Singapore, 23–25 June 1993. Springer, Berlin, pp 277–295

    Google Scholar 

  • Cohn AG, Renz J (2008) Qualitative spatial representation and reasoning. In: van Harmelen F, Lifschitz V, Porter B (eds) Foundations of artificial intelligence. Handbook of knowledge representation, 1st edn. Elsevier, Amsterdam, pp 551–596

    Google Scholar 

  • Cui Z, Cohn AG, Randell DA (1992) Qualitative simulation based on a logical formalism of space and time. In: Proceedings AAAI-92. AAAI Press, Menlo Park, pp 679–684

    Google Scholar 

  • Egenhofer MJ (2010) The family of conceptual neighborhood graphs for region–region relations. In: Fabrikant SI, Reichenbacher T, van Krefeld M, Schlieder C (eds) Proceedings of sixth international conference, GIScience 2010 Zürich, Switzerland, 14–17 Sep 2010. Springer, Berlin, pp 42–55

    Google Scholar 

  • Egenhofer MJ, Al-Taha KK (1992) Reasoning about gradual changes of topological relationships. In: Frank AU, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space. Springer, Berlin, pp 196–219

    Chapter  Google Scholar 

  • Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174

    Article  Google Scholar 

  • Egenhofer MJ, Mark DM (1995a) Modeling conceptual neighborhoods of topological relations. Int J Geogr Inf Syst 9(5):555–565

    Article  Google Scholar 

  • Egenhofer MJ, Mark DM (1995b) Naive geography. In: Frank AU, Kuhn W (eds) Spatial information theory. A theoretical basis for GIS. Proceedings of international conference, COSIT 95, Semmering, Austria, 21–23 Sept 1995. Springer, Berlin, pp 1–15

    Google Scholar 

  • Egenhofer MJ, Shariff AR (1998) Metric details for natural-language spatial relations. ACM Trans Inf Syst 16(4):295–321

    Article  Google Scholar 

  • Fabrikant SI, Hespanha SR, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann Assoc Am Geogr 100(1):13–29

    Article  Google Scholar 

  • Freksa C (1991) Qualitative spatial reasoning. In: Mark DM, Frank AU (eds) Cognitive and linguistic aspects of geographic space. Kluwer, Dordrecht, pp 361–372

    Chapter  Google Scholar 

  • Freksa C (1992) Temporal reasoning based on semi-intervals. Artif Intell 54(1):199–227

    Article  Google Scholar 

  • Freundschuh SM, Egenhofer MJ (1997) Human conceptions of spaces: implications for geographic information systems. Trans GIS 2(4):361–375

    Article  Google Scholar 

  • Galton A (1997) Continuous change in spatial regions. In: Hirtle SC, Frank AU (eds) Spatial information theory: a theoretical basis for GIS. Springer, Berlin, pp 1–14

    Chapter  Google Scholar 

  • Galton A (2000) Qualitative spatial change. Spatial information systems. Oxford University Press, Oxford

    Google Scholar 

  • Gapp K-P (1995) Object localization: selection of optimal reference objects. In: Frank AU, Kuhn W (eds) Spatial information theory. A theoretical basis for GIS. Proceedings of international conference, COSIT 95, Semmering, Austria, 21–23 Sept 1995. Springer, Berlin

    Google Scholar 

  • Gentner D, Boroditsky L (2001) Individuation, relativity, and early word learning. In: Bowerman M, Levinson SC (eds) Language, culture and cognition, vol 3., Language acquisition and conceptual developmentCambridge University Press, Cambridge, pp 215–256

    Google Scholar 

  • Gibson J (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Goldstone RL, Barsalou LW (1998) Reuniting perception and conception. Cognition 65:231–262

    Article  Google Scholar 

  • Gottfried B, van de Weghe N, Billen R, de Maeyer P (eds) (2009) Behaviour monitoring and interpretation—BMI’09 studying moving objects in a three-dimensional world: Proceedings of the 3rd workshop on behaviour monitoring and interpretation (BMI’09) Ghent, Belgium, Novemb 3, 2009. CEUR-WS.org, Aachen

    Google Scholar 

  • Gumperz JJ, Levinson SC (eds) (1996) Rethinking linguistic relativity. Cambridge University Press, Cambridge

    Google Scholar 

  • Hirschfeld LA, Gelman SA (eds) (1994) Mapping the mind: domain specificity in cognition and culture. Cambridge University Press, New York

    Google Scholar 

  • Jiang J, Worboys M (2009) Event-based topology for dynamic planar areal objects. Int J Geogr Inf Sci 23(1):33–60

    Article  Google Scholar 

  • Johnson M (1987) The body in the mind: the bodily basis of meaning, imagination, and reasoning. University of Chicago Press, Chicago

    Google Scholar 

  • Klein F (1872) Vergleichende Betrachtungen über neuere geometrische Forschungen (“A comparative review of recent researches in geometry”). Math Ann 43:63–100

    Article  Google Scholar 

  • Klippel A (2012) Spatial information theory meets spatial thinking—is topology the Rosetta Stone of spatio-temporal cognition? Ann Assoc Am Geogr. doi:10.1080/00045608.2012.702481

    Google Scholar 

  • Klippel A (2009) Topologically characterized movement patterns: a cognitive assessment. Spatial Cogn Comput 9(4):233–261

    Article  Google Scholar 

  • Klippel A, Li R (2009) The endpoint hypothesis: a topological-cognitive assessment of geographic scale movement patterns. In: Stewart Hornsby K, Claramunt C, Denis M, Ligozat G (eds) Spatial information theory. Proceedings of 9th international conference, COSIT 2009, Aber Wrac’h, France, 21–25 Sept 2009. Springer, Berlin, pp 177–194

    Google Scholar 

  • Klippel A, Li R, Hardisty F, Weaver C (2010) Cognitive invariants of geographic event conceptualization: what matters and what refines. In: Fabrikant SI, Reichenbacher T, van Krefeld M, Schlieder C (eds) Proceedings of sixth international conference, GIScience 2010 Zürich, Switzerland, 14–17 Sept 2010. Springer, Berlin, pp 130–144

    Google Scholar 

  • Klippel A, Weaver C, Robinson AC (2011) Analyzing cognitive conceptualizations using interactive visual environments. Cartogr Geogr Inf Sci 38(1):52–68

    Article  Google Scholar 

  • Klippel A, Worboys M, Duckham M (2008) Identifying factors of geographic event conceptualisation. Int J Geogr Inf Sci 22(2):183–204

    Article  Google Scholar 

  • Klix F (1971) Information und Verhalten: Kybernetische Aspekte der organismischen Informationsverarbeitung; Einführung in naturwissenschaftliche Grundlagen der allgemeinen Psychologie. Huber, Bern

    Google Scholar 

  • Knauff M, Rauh R, Renz J (1997) A cognitive assessment of topological spatial relations: results from an empirical investigation. In: Hirtle SC, Frank AU (eds) Spatial information theory: a theoretical basis for GIS. Springer, Berlin, pp 193–206

    Chapter  Google Scholar 

  • Kuhn W (2001) Ontologies in support of activities in geographic space. Int J Geogr Inf Sci 15(7):612–632

    Article  Google Scholar 

  • Kuhn W (2007) An image-schematic account of spatial categories. In: Winter S, Kuipers B, Duckham M, Kulik L (eds) Spatial information theory. Proceedings of 9th international conference, COSIT 2007, Melbourne, Australia, 19–23 Sept 2007. Springer, Berlin, pp 152–168

    Google Scholar 

  • Kurata Y (2008a) A strategy for drawing a conceptual neighborhood diagram. In: Stapleton G, Howse J, Lee J (eds) Lecture notes in computer science. Lecture notes in artificial intelligence, vol 5223. Diagrammatic representation and inference. Proceedings of 5th international conference, Diagrams 2008, Herrsching, Germany, 19–21 Sept 2008. Springer, Berlin, pp 388–390

    Google Scholar 

  • Kurata Y (2008b) The 9+-intersection: a universal framework for modeling topological relations. In: Cova TJ, Miller HJ, Beard K, Frank AU, Goodchild MF (eds) Geographic information science. Proceedings of 5th international conference, GIScience 2008, Park City, UT, USA, 23–26 Sept 2008. Springer, Berlin, pp 181–198

    Google Scholar 

  • Kurata Y, Egenhofer MJ (2009) Interpretation of behaviors from a viewpoint of topology. In: Gottfried B, Aghajan H (eds) Behaviour monitoring and interpretation. Ambient intelligence and smart environments. IOS Press, Amsterdam, pp 75–97

    Google Scholar 

  • Lakoff G (1987) Women, fire and dangerous things. Chicago University Press, Chicago

    Google Scholar 

  • Lakoff G (1990) The invariance hypothesis: is abstract reason based on image schemata? Cogn Linguist 1(1):39–74

    Article  Google Scholar 

  • Laurence S, Margolis E (1999) Concepts and cognitive science. In: Margolis E, Laurence S (eds) Concepts. Core readings. MIT Press, Cambridge, pp 3–81

    Google Scholar 

  • Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Doklady 10(8):707–710

    Google Scholar 

  • Li B, Fonseca F (2006) TDD: a comprehensive model for qualitative spatial similarity assessment. Spatial Cogn Comput 6(1):31–62

    Article  Google Scholar 

  • Li R, Klippel A, Yang J (2011) Geographic event conceptualization: where spatial and cognitive sciences meet. In: Carlson LA, Hölscher C, Shipley TF (eds) Proceedings of the 33rd annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 3168–3173

    Google Scholar 

  • Lu S, Harter D (2006) The role of overlap and end state in perceiving and remembering events. In: Sun R (ed) The 28th annual conference of the cognitive science society, Vancouver, British Columbia, Canada, 26–29 July 2006. Lawrence Erlbaum, Mahwah, pp 1729–1734

    Google Scholar 

  • Lu S, Harter D, Graesser AC (2009) An empirical and computational investigation of perceiving and remembering event temporal relations. Cogn Sci 33:345–373

    Article  Google Scholar 

  • Maguire MJ, Brumberg J, Ennis M, Shipley TF (2011) Similarities in object and event segmentation: a geometric approach to event path segmentation. Spatial Cogn Comput 3:254–279

    Article  Google Scholar 

  • Mandler JM (1992) How to build a baby II. Conceptual primitives. Psychol Rev 99(4):587–604

    Article  Google Scholar 

  • Mark DM, Egenhofer MJ (1994a) Calibrating the meanings of spatial predicates from natural language: line-region relations. In: Waugh TC, Healey RG (eds) Advances in GIS research, 6th international symposium on spatial data handling, Edinburgh, Scotland, UK, pp 538–553

    Google Scholar 

  • Mark DM, Egenhofer MJ (1994b) Modeling spatial relations between lines and regions: Combining formal mathematical models and human subject testing. Cartogr Geogr Inf Syst 21(3):195–212

    Google Scholar 

  • Mark DM, Egenhofer MJ (1995a) Topology of prototypical spatial relations between lines and regions in English and Spanish. In: Proceedings, Auto Carto 12, Charlotte, North Carolina, March 1995, pp 245–254

    Google Scholar 

  • Medak D (1999) Lifestyles—an algebraic approach to change in identity. In: Böhlen M, Jensen C, Scholl M (eds) Lecture notes in computer science. Spatio-Temporal Database Management. Springer, Berlin, pp 19–39

    Google Scholar 

  • Medin DL, Wattenmaker WD, Hampson SE (1987) Family resemblance, conceptual cohesiveness, and category construction. Cogn Psychol 19(2):242–279

    Article  Google Scholar 

  • Montello DR (1993) Scale and multiple psychologies of space. In: Frank AU, Campari I (eds) Spatial information theory: a theoretical basis for GIS. Springer, Berlin, pp 312–321

    Chapter  Google Scholar 

  • Muller P (2002) Topological spatio-temporal reasoning and representation. Comput Intell 18(3):420–450

    Article  Google Scholar 

  • Peuquet DJ (1988) Representations of geographic space: toward a conceptual synthesis. Ann Assoc Am Geogr 78(3):375–394

    Article  Google Scholar 

  • Pothos EM, Chater N (2002) A simplicity principle in unsupervised human categorization. Cogn Sci 26(3):303–343

    Article  Google Scholar 

  • Pothos EM, Close J (2008) One or two dimensions in spontaneous classification: a simplicity approach. Cognition 2:581–602

    Article  Google Scholar 

  • Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connections. In: Nebel B, Rich C, Swartout WR (eds) Proceedings of the 3rd international conference on knowledge representation and reasoning. Morgan Kaufmann, San Francisco, pp 165–176

    Google Scholar 

  • Renolen A (2000) Modelling the real world: conceptual modelling in spatiotemporal information system design. Trans GIS 4(1):23–42

    Article  Google Scholar 

  • Renz J (2002) Qualitative spatial reasoning with topological information. Springer, Berlin

    Book  Google Scholar 

  • Riedemann C (2005) Matching names and definitions of topological operators. In: Cohn AG, Mark DM (eds) Spatial information theory. Proceedings of international conference, COSIT 2005, Elliottville, NY, USA, 14–18 Sept 2005. Springer, Berlin, pp 165–181

    Google Scholar 

  • Schwering A (2007) Evaluation of a semantic similarity measure for natural language spatial relations. In: Winter S, Kuipers B, Duckham M, Kulik L (eds) Spatial information theory. Proceedings of 9th international conference, COSIT 2007, Melbourne, Australia, 19–23 Sept 2007. Springer, Berlin

    Google Scholar 

  • Schwering A (2011) Does metric really define topology, 20 May 2011 (personal communication)

    Google Scholar 

  • Shariff AR, Egenhofer MJ, Mark DM (1998) Natural-language spatial relations between linear and areal objects: the topology and metric of English-language terms. Int J Geogr Inf Sci 12(3):215–246

    Google Scholar 

  • Shaw R, McIntyre M, Mace W (1974) The role of symmetry in event perception. In: MacLeod RB, Pick HL (eds) Perception. Essays in honour of James J. Gibson. Cornell University Press, Ithaca, pp 276–310

    Google Scholar 

  • Sridhar M, Cohn A, Hogg D (2011) From video to RCC8: exploiting a distance based semantics to stabilise the interpretation of mereotopological relations: spatial information theory. In: Egenhofer M, Giudice N, Moratz R, Worboys M (eds) Spatial information theory. Proceedings of 10th international conference, COSIT 2011, Belfast, ME, USA, 12–16 Sept 2011. Springer, Berlin, pp 110–125

    Google Scholar 

  • Stock K, Cialone C (2011) Universality, Language-variability and individuality: defining linguistic building blocks for spatial relations. In: Egenhofer M, Giudice N, Moratz R, Worboys M (eds) Lecture notes in computer science. Spatial information theory. Proceedings of 10th international conference, COSIT 2011, Belfast, ME, USA, 12–16 Sept 2011. Springer, Berlin, pp 391–412

    Google Scholar 

  • Tversky B, Morrison JB, Betrancourt M (2002) Animation: does it facilitate? Int J Hum Comput Stud 57:247–262

    Article  Google Scholar 

  • Weaver C (2004) Building highly-coordinated visualizations in improvise. In: Proceedings of the IEEE symposium on information visualization 2004, Austin, TX, Oct 2004

    Google Scholar 

  • Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geogr Inf Sci 20(10):1087–1108

    Article  Google Scholar 

  • Xu J (2007) Formalizing natural-language spatial relations between linear objects with topological and metric properties. Int J Geogr Inf Sci 21(4):377–395

    Article  Google Scholar 

  • Yang J, Klippel A, Li R (in revision) Cognitive saliency of topological change under expansion and contraction. Int J Geogr Inf Sci

    Google Scholar 

  • Zacks JM (2004) Using movement and intentions to understand simple events. Cogn Sci 28:979–1008

    Article  Google Scholar 

  • Zhan FB (2002) A fuzzy set model of approximate linguistic terms in descriptions of binary topological relations between simple regions. In: Matsakis P, Sztandera LM (eds) Applying soft computing in defining spatial relations. Physica-Verlag, Heidelberg, pp 179–202

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Klippel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klippel, A., Li, R., Yang, J., Hardisty, F., Xu, S. (2013). The Egenhofer–Cohn Hypothesis or, Topological Relativity?. In: Raubal, M., Mark, D., Frank, A. (eds) Cognitive and Linguistic Aspects of Geographic Space. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34359-9_11

Download citation

Publish with us

Policies and ethics