
Practical Cryptanalysis of ARMADILLO2

Maŕıa Naya-Plasencia1,� and Thomas Peyrin2,��

1 University of Versailles, France
maria.naya-plasencia@prism.uvsq.fr

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com

Abstract. The ARMADILLO2 primitive is a very innovative hardware-
oriented multi-purpose design published at CHES 2010 and based on
data-dependent bit transpositions. In this paper, we first show a very
unpleasant property of the internal permutation that allows for example
to obtain a cheap distinguisher on ARMADILLO2 when instantiated as a
stream-cipher. Then, we exploit the very weak diffusion properties of
the internal permutation when the attacker can control the Hamming
weight of the input values, leading to a practical free-start collision attack
on the ARMADILLO2 compression function. Moreover, we describe a new
attack so-called local-linearization that seems to be very efficient on data-
dependent bit transpositions designs and we obtain a practical semi-
free-start collision attack on the ARMADILLO2 hash function. Finally, we
provide a related-key recovery attack when ARMADILLO2 is instantiated as
a stream cipher. All collision attacks have been verified experimentally,
they require negligible memory and a very small number of computations
(less than one second on an average computer), even for the high security
versions of the scheme.

Keywords: ARMADILLO2, hash function, stream-cipher, MAC, cryptanal-
ysis, collision.

1 Introduction

Hash functions are among the most important and widely spread primitives in
cryptography. Informally a hash functionH is a function that takes an arbitrarily
long message as input and outputs a fixed-length hash value of size n bits. The
classical security requirements for such a function are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary
to find a collision (two different messages that lead to the same hash value) in less
than 2n/2 hash computations, or a (second)-preimage (a message hashing to a
given challenge) in less than 2n hash computations. In general, a hash functionH

� Supported by the French Agence Nationale de la Recherche through the SAPHIR2
project under Contract ANR-08-VERS-014.

�� Supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore
National Research Foundation Fellowship 2012.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 146–162, 2012.
c© International Association for Cryptologic Research 2012

Practical Cryptanalysis of ARMADILLO2 147

is built from an iterative use of a n-bit output compression function h in a Merkle-
Damg̊ard-like operating mode [6,4]. The compression function takes a chaining
variable CV (fixed to an initial value IV at the beginning) and a message block
M as inputs and in order to allow security proofs on the operating mode, one
requires the same security properties as a hash function, namely collision and
(second)-preimage resistance. However, the compression function allows several
flavors of security properties depending on how well the attacker can control the
chaining variable:

• free-start collision: the attacker fully controls the chaining variable, i.e. both
its value and difference
• semi-free-start collision: the attacker control partially the chaining variable,
i.e. only its value, and the difference is null
• collision: the attacker does not control the chaining variable, the value is
defined by the IV and the difference is null

For all three flavors, it should be impossible for an adversary to find a collision in
less than 2n/2 compression function computations. Note that free-start collision
is required as necessary assumption regarding the compression function in the
Merkle-Damg̊ard-like security proofs. Moreover, a semi-free-start collision means
there exists initial values IV for which it is possible to find collisions for the hash
function. Therefore, both these two notions are very important and should be
verified for a secure compression function.

ARMADILLO2 [2] is a very novel primitive dedicated to hardware, defining a
FIL-MAC, a stream cipher and a hash function. Originally, two versions were
proposed, ARMADILLO and ARMADILLO2, the later being the recommended one.
A key recovery attack on ARMADILLO was rapidly published by a subset of the
designers [9]. ARMADILLO2 remained unbroken until Abdelraheem et al. [1] found
a meet-in-the-middle technique that allows to invert the ARMADILLO2main func-
tion. This cryptanalysis eventually led to a key recovery attack on the FIL-MAC
and the stream cipher, and a (second)-preimage attack on the hash function.
However, while being the first weakness published on ARMADILLO2, this work is
an improved meet-in-the-middle technique, therefore requiring a lot of computa-
tions and memory, often close to the generic complexity. For example, the preim-
age attack on the 256-bit output hash function requires either 2208 computations
and 2205 memory or 2249 computations and 245 memory. With its data-dependent
bit transpositions and original compression function construction, ARMADILLO2
is clearly not following the classical design trends for symmetric-key primitives
(for example RC5 [7] and RC6 [8] use data-dependent rotations, while IDEA [5] use
data-dependent multiplication). As a consequence, it would be interesting to look
at this proposal without necessarily relying on known cryptanalysis techniques.

Our Contributions. In this paper, we first observe the very unpleasant prop-
erty that the parity bit is preserved through all ARMADILLO2 internal permu-
tations. This allows us for example to derive a very cheap distinguisher for
the stream-cipher. Then, we analyze the differential diffusion of the permuta-
tions and we provide practical free-start collision attacks for all versions of the

148 M. Naya-Plasencia and T. Peyrin

compression function of ARMADILLO2. We extend our results by introducing a
new technique, the local linearization, that seems very efficient against data-
dependent bit transpositions. This method led us to practical semi-free-start
collision attacks for all versions of ARMADILLO2. All attacks require very few
computations (at most 210.2 operations for 256-bit output version) and negli-
gible memory. Moreover, our implementations validate our techniques and we
provide collision examples. Finally, we provide a related-key recovery attack
when ARMADILLO2 is instantiated as a stream cipher.

2 The ARMADILLO2 Function

We let X [i] denote the i-th bit of a word X . Let C be an initial vector of size c
and U be a message block of size m. The size of the register (C||U) is k = c+m,
where || denotes the concatenation operation. The internal ARMADILLO2 function
transforms the vector (C,U) into (Vc, Vt) as described in Figure 1, (Vc, Vt) =
ARMADILLO2(C,U). The internal ARMADILLO2 function relies on a parameterized
permutation on k bits Q, instantiated by QU and QX , where U is a m-bit
parameter and X is a k-bit parameter.

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [2], the permu-
tations are not specifically defined but some criteria they should fulfill is given.

C U

QX(C‖U) X

QU (C‖U)

C U

�

�

U

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

Y

�
���

Vc Vt

Fig. 1. The internal function of ARMADILLO2. The thick line at the side of a register
represents the least significant bit.

Practical Cryptanalysis of ARMADILLO2 149

We denote by cst a constant of size k defined by alternating 0’s and 1’s, i.e. :
cst = 1010 · · ·10. Using these notations, we can specify Q which is used twice in
the internal ARMADILLO2 function. Let A be the a-bit parameter and B be the
k-bit input of Q, the parameterized permutation QA can be divided into a = |A|
simple steps. The i-th step of QA (reading A from its least significant bit to its
most significant one) is defined by:

• an elementary bitwise permutation: B ← σA[i](B), that is if the i-bit of
A is 0 we apply σ0 to B, otherwise we apply σ1.
• a constant addition (bitwise XOR) of cst: B ← B ⊕ cst.

The internal ARMADILLO2 function first computes X = QU (C||U), then Y =
QX(C||U), and finally outputs (Vc, Vt) = Y ⊕X .

Using this internal primitive, ARMADILLO2 builds a FIL-MAC, a stream-cipher
and a hash function:

• Stream-cipher: the secret key is inserted in the C register and the output
sequence is obtained by taking the k bits of the output (Vc, Vt) after one
iteration. The keystream is composed of k-bit frames indexed by U (which
is a public value).
• Hash function: it uses a strengthened Merkle-Damg̊ard construction, where
Vc represents the output of the compression function (i.e. the next chaining
value or the hash digest), U is the incoming message block and C is the
incoming chaining variable.
• FIL-MAC: the secret key is inserted in the C register and the challenge,
considered known by the attacker, is inserted in the U register. The response
to the challenge is the m-bit output Vt.

Five different sets of register sizes (k, c,m) are provided, namely (128, 80, 48),
(192, 128, 64), (240, 160, 80), (288, 192, 96) and (384, 256, 128).

3 First Tools

We denote HAM(X) the Hamming weight of the word X . We recall from [1] that
for two random k-bit words A and B of Hamming weight a and b respectively, the
probability that HAM(A∧B) = i (where ∧ stands for the bitwise AND function)
is given by the formula

Pand(k, a, b, i) =

(
a
i

)(
k−a
b−i

)

(
k
b

) =

(
b
i

)(
k−b
a−i

)

(
k
a

) .

Moreover, we would like to deduce from it the probability that HAM(A⊕ B) = i
(where ⊕ stands for the bitwise XOR function) for two randomly chosen k-
bit words A and B of Hamming weight a and b respectively. We remark that
HAM(A⊕B) = a+b−2·HAM(A∧B) and therefore the probability that HAM(A⊕B) =
i is given by the formula.

150 M. Naya-Plasencia and T. Peyrin

Pxor(k, a, b, i) =

⎧
⎨

⎩
Pand(k, a, b,

a+b−i
2) for (a+ b− i) even

0 for (a+ b− i) odd

Since they have not been specified in the original ARMADILLO2 document, in the
following we assume that σ0 and σ1 are randomly chosen bit permutations.

4 Parity Preservation

We call the parity bit of an a-bit word A the bit value
⊕a−1

i=0 A[i]. Regardless
of the parameter A of the internal permutation QA, we have that the parity
of the input is always maintained through the permutation. This can
be easily verified by remarking that QA is composed of several identical rounds,
all satisfying this property. Indeed, one round is composed of a bit permutation
(which fully maintains the Hamming weight) and an XOR of the internal state
with the constant cst = 1010...10. This constant being always the same during
the whole ARMADILLO2 computation and its parity being even, the parity of the
internal state remains the same after application of the XOR. Note that even if
this constant was changed during the rounds, the attacker would only have to
compute the parity of the XOR of all constants to be able to tell if the parity bit
will be maintained or negated. This property is moreover maintained whatever
number of rounds is applied in the permutations, thus the attack proposed in
this section is independent of the number of rounds.

Distinguisher for the Stream Cipher Mode. We can exploit the previous
property to build a cheap distinguisher on ARMADILLO2 when used as a stream-
cipher. In the attack model, the whole output of the function is assumed to be
known as it is a frame of the keystream. This output is generated by a XOR
of internal states X and Y . Since permutations QU and QX will maintain the
parity, their respective outputs X and Y will both have the same parity as
(C||U). As a consequence, the output of the function X ⊕ Y always has an even
parity. For a random sequence, this will only happen with probability 1/2, as for
ARMADILLO2 this happens with probability 1. In other words, the entropy of the
ARMADILLO2 function output is reduced by one bit.

5 Controlled Diffusion: Practical Free-Start Collision
Attack

In this section, we show how an attacker can control the bit difference diffusion
in ARMADILLO2 function by using the available inputs. This leads to a very cheap
free-start collision attack against the compression function.

Practical Cryptanalysis of ARMADILLO2 151

5.1 General Description

Assume that we insert a single bit difference in C, that is HAM(ΔC) = 1, and no
difference in U that is ΔU = 0. We can use c distinct ΔC, one for each active
bit position. The attack is depicted in Figure 2.

HAM(ΔC)
= 1

ΔU
= 0

QX

ΔX = 00...01

QU

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�
�

�
�

�

�
�

�
�
�

�
�

�
�
�

�
�

............
...........
........

......
.....

......
.......
......

.........
.........

........
..
..........

........
.......

............
......

�

HAM(ΔC)
= 1

ΔU
= 0

�

�

ΔU
= 0

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

ΔY = 0...0||*...*

�
���

ΔVc

= 0
ΔVt

= ∗..∗

Fig. 2. A schematic view of the free-start collision attack on ARMADILLO2. The thick
line at the side of a register represents the least significant bit and black circles stand
for bit differences. The dashed box indicates the first round of QX , which contains a
difference on its corresponding parameter input bit.

Difference Propagation in QU . Since we have no difference in U , the per-
mutation QU always remains the same. We only have to study the propagation
of the bit difference in C through QU . Note that one round of the internal per-
mutation QU provides no difference diffusion since it is only composed of a bit
permutation and a constant addition. Therefore, the single bit difference in C
will be just transfered to some random bit position in X at the end of QU and
we have HAM(ΔX) = 1. We would like the single bit difference in X to be posi-
tioned in bit 0, i.e. ΔX = 00...01 (this will later allow us to use the freedom
degrees efficiently). For a randomly chosen value of U and C, this happens with
probability

PX =
1

k
.

152 M. Naya-Plasencia and T. Peyrin

Difference Propagation in QX . Since we have a single difference on the first
bit of X (corresponding to the first step of QX), the permutation QX remains
the same except for the first step where we switch from bit permutation σ0 to σ1

or from σ1 to σ0. We denote by Pstep(in, out) the probability that in active bits
are mapped to out active bits through a step of data-dependent permutation
with a difference (i.e. σ0 and σ1 are swapped). Assume for the moment that
after this first step, only b bits are active in the internal state. This happens
with probability Pstep(1, b). Since the next rounds of the internal permutation
QX provide no difference diffusion, we end up in Y with b active bits randomly
distributed. We need to ensure that all the b active bits remaining in Y will go
to the m-bit Vt part of the k-bit output, so that all differences will be truncated
and we eventually obtain a collision on the output of the compression function.
For b ≤ m, this happens with probability

Pout(b) = Pand(k,m, b, b) =

(
b
b

)(
k−b
m−b

)

(
k
m

) =

i=b−1∏

i=0

m− i

k − i
.

During the feed-forward after QX the single active bit of X is already on the Vt

part of the output. Overall the probability of obtaining a compression function
collision for randomly chosen U and C values is:

Pcollision = PX ·
i=m∑

i=1

Pstep(1, i) · Pout(i).

the sum stopping atm because when i > m, we trivially have Pout(i) = 0. At this
point our problem is that in order for the probability Pout(i) to be high enough,
we need the number i of active bits to be small. On the other side, if i is small,
Pstep(1, i) will be very low (we do not explain how to compute Pstep(1, i) here
as we will study a slightly more detailed problem in the next section). However,
in this scenario we only considered an attacker that randomly chooses the value
of U and C and the bit difference position in C, but we can do much better by
using the available degrees of freedom efficiently.

5.2 Using the Freedom Degrees

First, note that the event related to the probability PX only depends on the
position of the bit difference in C and on the value of U . We can therefore
attack QU in a first phase (by fixing the position of the bit difference in C and
the value of U), and then independently attack QX by choosing the value of C.

Handling QU . We will see later that we would like C and U values to have
an extremely low or extremely high Hamming weight. Therefore, we fix ΔX =
00...01 and test with the two values U = 00..00 and U = 11..11 how the bit
difference will propagate through Q−1

U (note that we are dealing with the inverse
of QU , thus attacking backwards from ΔX). For each try, we have a probability

Practical Cryptanalysis of ARMADILLO2 153

Pand(k, c, 1, 1) = c/k that the single bit difference is mapped to the C part of
the input. Since for all ARMADILLO2 versions we have 2c/k > 1, we expect at
least one of the two U candidates to satisfy ΔX = 00...01, HAM(ΔC) = 1 and
HAM(ΔU) = 0. Overall, this phase costs us only 2 operations. We assume without
loss of generality that the selected candidate has value U = 00..00.

Handling QX . At the present time, everything is fixed except the value of
C and we have ΔX = 00...01 and U = 00..00. We now describe a simple
criteria in order to choose the values of C such that the first round probability
Pstep(1, i) in QX is high, even for small i. As an example, let’s assume that
C = 0, that is HAM(C||U) = 0. In that case, we trivially have that Pstep(1, 1) = 1
(and Pstep(1, i) = 0 for all other i) since changing the bit positions of the word
00..00 (switching from σ0 to σ1 or from σ1 to σ0) will not have any effect at
all and the single bit difference in C will just be placed to some random bit
position. Similarly, with a single one-bit in C, that is HAM(C||U) = 1, we have
that Pstep(1, 1) = 1

128 + 2·127
1282 and Pstep(1, 3) = 127·126

1282 (and Pstep(i) = 0 for
all other i). More generally, we have to compute the probability Pstep(1, b, hw)
which corresponds to the probability Pstep(1, b) knowing that the input word
hamming weight is hw. This can be modeled as follows: choose two random k-
bit words x and y both with Hamming weight hw (they represent σ0(C||U) and
σ1(C||U)) and compute z = x⊕ y ⊕ 1 (the 1 represents the single bit difference
in C). Then Pstep(1, b, hw) is the probability that HAM(z) = b (note that HAM(z)
is always odd thus we have Pstep(1, 2i, hw) = 0 for all i) and we have:

Pstep(1, b, hw) =
hw

c
· Pxor(k, hw, hw − 1, b) +

c− hw

c
· Pxor(k, hw, hw + 1, b).

The complexity for handling QX is finally

Comp =
1

∑i=m
i=1 Pstep(1, i, hw) · Pout(i)

.

5.3 Complexity Results

The number C of candidate values we can generate with Hamming weight hw
is
(

c
hw

)
and in order to have a good chance to find a collision after QX with this

amount, we need to ensure that

(
c

hw

)
≥ 1/

i=m∑

i=1

Pstep(1, i, hw) · Pout(i).

One can check that in order to minimize the complexity Comp, the dominant
factor of the sum is when i is small. Then, for i small, Pstep(1, i, hw) is higher
when hw is close to 0 or close to k, in other words the input should have very
low or very high Hamming weight. Since we previously chose U = 00..00 our
goal is to find for each ARMADILLO2 versions the smallest hw value hwmin that

154 M. Naya-Plasencia and T. Peyrin

ensures enough C candidate values to handle the collision probability in QX

(but the same reasoning is possible with U = 11..11 and the biggest hw value
hwmax). Overall, the full attack runs in 2 + Comp operations (i.e. compression
function calls) and negligible memory in order to find a free-start collision for
the ARMADILLO2 compression function. We depict in Table 1 our results relative
to all proposed versions of ARMADILLO2. This attack has been implemented and
verified in practice for k = 128 and we give free-start collision examples in the
Appendix.

Table 1. Summary of results for free-start collision attack on the different size variants
of the ARMADILLO2 compression function. The number of C candidates must always be
enough so as to handle the collision probability in QX .

scheme parameters attack parameters

k c m
generic

hwmin

nber of C collision attack

complexity candidates prob. in QX complexity

128 80 48 240 1 26.3 2−4.1 27.5

192 128 64 264 1 27 2−4.6 27.8

240 160 80 280 1 27.3 2−4.7 28.1

288 192 96 296 1 27.6 2−4.7 28.3

384 256 128 2128 1 28 2−4.8 28.7

6 Local Linearization: Practical Semi-free-Start Collision
Attack

In this section, we show how one can obtain a semi-free-start collision attack
(no difference on the input chaining variable) with a very low computational
complexity for the ARMADILLO2 compression function.

6.1 General Description

The previous method only allows to add differences on the capacity part of the
input, thus leading to free-start collision attacks. One can directly extend this
technique to allow only differences in the message part of the input, but this
only leads to semi-free-start collisions for randomly chosen bit permutations σ0

and σ1 with a not-so-high probability of success.
We would like to derive a semi-free-start collision attack that will output

a result with very high probability. In order to achieve this goal we propose
a new technique for data-dependent bit transposition ciphers, so-called local
linearization: by guessing some part of the input we are able to render a few
rounds of the internal permutation linear. Indeed, by knowing the g first bits of

Practical Cryptanalysis of ARMADILLO2 155

U we completely determine the permutations applied during the first g rounds
of QU . Therefore, for those g rounds the primitive QU only consists of known
bit permutations and known constant additions. With this method we neutralize
for the first g rounds the only non-linearity source: the fact that we don’t know
which bit permutation σ0 or σ1 is applied each round.

On a high-level view, our semi-free-start collision attack will force a collision
on the X value at the output of QU thanks to the local linearization technique.
This collision on X will ensure that the QX permutation will be the same for
both inputs. Therefore, the difference Hamming weight on the input of QX will
remain the same in the output. We then hope that those bit differences will be
mapped in the truncated part of the output in order to eventually obtain the
semi-free-start collision (no difference is feed-forwarded from X since we forced
a collision on it). The attack is depicted in Figure 3.

HAM(ΔC)
= 0

ΔU

QX

ΔX = 0

QU

�
�

�

�

�
�

�..........
.................

..

�

�
�

�
�

�
�

�
�

�
�
�

�
�

�

�
�

�
�
�

�
�

�
�
�

�
�
�..

......
........

.......
.....

.....
......

.......
........
.........

.......
.....

.......
..........

......
............

.........

�

�

�

HAM(ΔC)
= 0

ΔU

�

�

ΔU

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

ΔY = 0...0||*...*

�
���

ΔVc

= 0
ΔVt

= ∗..∗

Fig. 3. A schematic view of the semi-free-start collision attack on ARMADILLO2. The
thick line at the side of a register represents the least significant bit and black circles
stand for bit differences. The dashed box indicates the linearized part.

During a first phase, the input will be divided into two parts: the fixed and the
unfixed part. The fixed part z ∈ {0, 1}g is composed of the g first bits of U and
we choose random values for those g bits (so as to know the g first choices of σ0 or
σ1). The unfixed part w ∈ {0, 1}k−g is composed of the rest of the input bits and

156 M. Naya-Plasencia and T. Peyrin

we will be set to a value later. We force the input difference to be contained in
the fixed part and we denote it Δz ∈ {0, 1}g (since we are looking for semi-free-
start collisions we obviously have g ≤ m, otherwise we would have a difference
in the input chaining variable C). Let I1 = (C1||U1) (resp. I2 = (C2||U2)) be the
k-bit value of the first input (resp. second output), we have:

I1 = (x||z) and I2 = (x||z ⊕Δz).

and our goal is to have the collision X = QU1(I1) = QU2(I2).
Assume for the moment that this collision on X happens. Then the same

permutation QX will be used for both inputs I1 and I2 on the right side of
Figure 1. As a consequence, no additional bit difference will be introduced during
the computation of QX , but the bit difference positions will be randomly moved.
In order to obtain a semi-free-start collision on the output of the function, we
need the b = HAM(Δz) active bits of the input to be mapped in the truncated
part of the output through QX . As already explained in Section 5, this happens
with probability

Pout(b) = Pand(k,m, b, b) =
i=b−1∏

i=0

m− i

k − i
.

6.2 Colliding on X

We need now to evaluate the probability of getting a collision on X . Note that
for any round, if there is no difference on the bit choosing the permutation to
apply σ0 or σ1, the bit differences at the input of this round will only have
their position changed and cannot be erased. Therefore, if we want to obtain a
collision on X , we need to obtain it at latest just after the last round of QU for
which a difference is inserted on the side (in U). We consider from now on that
the input difference Δz contains at least one active bit on its MSB, thus this
last round is the g-th one.

We know the value of the g first bit of U , therefore we know exactly the
permutation applied to I1 and I2 for the g first rounds of QU . For a collision
after g rounds of QU , we want that

σU1[g−1](· · · (σU1[1](σU1[0](I1)⊕ cst)⊕ cst) · · ·)
= σU2[g−1](· · · (σU2[1](σU2[0](I2)⊕ cst)⊕ cst) · · ·)

and since all operations are linear, this can be rewritten as

ρ(I1)⊕A = ρ′(I2)⊕B = ρ′(I1 ⊕Δz)⊕B = ρ′(I1)⊕ ρ′(Δz)⊕B

where

ρ = σU1 [g−1] ◦ · · ·σU1[1] ◦ σU1[0] A = σU1[g−1](· · · (σU1 [1](cst)⊕ cst) · · ·)
ρ′ = σU2[g−1] ◦ · · ·σU2 [1] ◦ σU2[0] B = σU2[g−1](· · · (σU2 [1](cst)⊕ cst) · · ·).

Practical Cryptanalysis of ARMADILLO2 157

Finally, we end up with the equation

ρ(I1)⊕ ρ′(I1) = A⊕B ⊕ ρ′(Δz) (1)

Since we know the value of the g first bit of U , we can compute the value of
A and B. Moreover, assuming that we already chose a Δz, then the collision
condition (1) can be rephrased as

I1 ⊕ τ(I1) = C

where C = ρ−1(A⊕B ⊕ ρ′(Δz)) and τ = ρ−1 ◦ ρ′.
In order to study this system S of k bit equations, we model τ as a random

bit permutation and C as a random k-bit word. Note that since this equation
system is linear finding the potential solutions requires only a few operations,
but we would like to know how many such systems we need to generate before
finding a solution, i.e. a collision on X . Thus, our goal is now to deduce the
probability that this system has at least one solution and what is the average
number of expected solutions.

The structure of this equation system is very particular and the number of
independent groups of bit equations is exactly the number of cycles of the bit
permutation τ . More precisely, let CYCLE(τ) represent the number of cycles of
the permutation τ and let Si denote the set of bits belonging to the i-th cycle
of τ .

Theorem 1. The equation system S : I1 ⊕ τ(I1) = C admits a solution if and
only if for every cycle set Si of τ the parity of the sum of the corresponding C
bit is null, that is

⊕

p∈Si

C[p] = 0.

If this system is solvable, then the number of solutions that can be generated is
exactly equal to 2CYCLE(τ).

The Idea of the Theorem is that when we want to find a solution for the
system, we can start by fixing one bit a0 to a random value. This bit is involved
into two binary equations from S. All equations having only two terms, one of
the two equations directly links bit a0 with say bit a1, and we can deduce the
value of a1. The bit a1 is in turn linked with bit a2 through his second equation
and we directly deduce the value of a2. This chain of dependency will eventually
cycle (the new bit deduced will be a0 again) and will be validated if and only if
the sum of the C bits of the equations visited is null (otherwise we encounter a
inconsistency). This check is then performed for all cycles.

Proof. Since τ is a bit permutation, the equation system S can be represented
as a collection of cycles, each cycle depicting the direct cyclical dependencies
between some set of bits: if bit x and bit y are linked by one of the k equations,

158 M. Naya-Plasencia and T. Peyrin

then they belong to the same cycle. The vertex weight between two members x
and y of the cycle is the value C[x].

If we fix the bit value of a member of a cycle Si, then this determines entirely
all the other bits of that cycle (according to the vertices values). Then, if the XOR
of all the vertex weights is different from zero, we have a direct contradiction. A
solution can only exist if all cycles present no internal contradiction.

Each cycle can have either zero or two solutions (the two solutions being
their mutual complement). If every cycle has no contradiction, then there exists

exactly 2CYCLE(τ) distinct combinations of cycle solutions, each one leading to a
distinct solution for the whole equation system S. 	

From Theorem 1, we directly deduce that the probability that the system admits
a solution is equal to 2−CYCLE(τ). The expected number of cycles for a randomly
chosen permutation on k elements is log(k). Therefore, we have to try at least
2log(k) different equation systems before finding one admitting a solution. When
one system admits a solution, we directly get 2log(k) solutions for free. Overall,
the cost for finding one solution of the system is 1 on average (the average cost
is the meaningful one here since we will have to find several inputs colliding on
X during the whole attack).

6.3 Complexity Results

We now look for a solution such that the original guess of the g first bits of
the input was right (with probability 2−g) and such that the b bit differences in
QX are mapped to the truncated part of the output (with probability Pout(b)).
Overall, the total complexity of the semi-free-start collision attack is 2g ·P−1

out(b)
with b ≤ g. Minimizing g and b will minimize the overall complexity, but we
need to ensure that we can go through enough equation systems in order to have
a good chance to find a collision eventually. More precisely, we need

1/2 · 2g ·
(
g

b

)
≥ 2g · P−1

out(b)

which can be rewritten as (
g

b

)
≥ 2 · P−1

out(b).

We depict in Table 2 our results relative to all proposed versions of ARMADILLO2.
This attack has been implemented and verified in practice for k = 128 and we
give semi-free-start collision examples in the Appendix.

7 Related-Key Recovery in Stream Cipher Mode

In this section we will present a related key attack that will allow us to recover
all key bits in practical time when using ARMADILLO2 in the stream cipher mode.
We will first present the main idea of this attack, and afterwards, we will give a
more detailed analysis of the probabilities and complexities.

Practical Cryptanalysis of ARMADILLO2 159

Table 2. Summary of results for semi-free-start collision attack on the different size
variants of the ARMADILLO2 compression function

scheme parameters attack parameters

k c m
generic

g b Pout(b)
time

complexity complexity

128 80 48 240 6 2 2−2.9 28.9

192 128 64 264 7 2 2−3.2 210.2

240 160 80 280 7 2 2−3.2 210.2

288 192 96 296 7 2 2−3.2 210.2

384 256 128 2128 7 2 2−3.2 210.2

7.1 Using Related-Keys for Recovering the Key

First of all, we consider a pair of related keys (K1,K2) that have one only bit
of difference, that is HAM(K1 ⊕K2) = HAM(ΔK) = 1. Our analysis will work for
any bit difference position d amongst all the bits of the key. Note that we expect
a pair of keys valid for performing the related-key attack to appear after using
about (2k/k)1/2 keys.

Let us consider a value of U for generating k bits of key-stream with each of
both keys K1 and K2. We use the index i for the intermediate states generated
from the key Ki. We first make the following observations, important in order
to understand the whole attack procedure:

• Since no difference is inserted in the U part (it is a public value) and since
HAM(ΔK) = 1, we have HAM(X1 ⊕X2) = 1. Let e be the bit position of this
difference in X .
• The first (e − 1) intermediate states of QX will also have a difference of
Hamming weight 1.

We assume that the attacker can choose the values of U . In this case, we can
make the bit difference in the key to go from position d to any wanted position
e in X through QU . We expect 2m/k distinct values of U that make the bit
difference go from position d to e for e ∈ [0, k− 1]. We denote by Ue each one of
these k subgroups of U values.

The output of the function (Vc, Vt) = X ⊕ Y is known to the attacker, but
concerning X he only knows the m bits of the U part (since U is known, he can
deduce directly where the bits coming from U and C will be eventually located
in X). Thus, he can recover m bits from the outputs of QX , Y1 and Y2. If he
could compute backward from Y1 and Y2 until the beginning of the e-th step of
QX , the colliding positions of the bits known from Y1 and from Y2 will have the
same values with maybe the exception of one, which would be the original single
bit difference before the step e.

160 M. Naya-Plasencia and T. Peyrin

Our attack basically consists in choosing several values for U from Ue, for
decreasing e values (starting from e = k − 1), that will gradually increase the
number of key bits appearing in X after position e. Each time we will guess
the value of the new key bits appearing and discard the guesses that will not
lead to collisions on the bit values in the colliding positions just before step e
when computing backward from Y1 and Y2 in QX . The complexity of this attack
depends on the bit permutations σ0 and σ1, but in the next subsection we give
a complexity analysis assuming that these permutations are randomly chosen.

7.2 Generic Complexity Estimation

We start at e = k − 1. First, we choose the value of i (denoted imax), that
maximizes the probability Pand(k,m,m, i) that we denote pmax. For instance,
if we consider the smallest version of ARMADILLO2, where k = 128, c = 80 and
m = 48, then we have imax = 18 and the probability of obtaining 18 positions
of known bits that collide is equal to pmax = 2−2.72.

Amongst the values from Uk−1, we choose pmax
−1 random ones. Each of them

is introduced in the ARMADILLO2 function parametrized with the keys K1 and
K2. For each of the pmax

−1 pairs of values, we guess the bit at position k − 1
of X1 and of X2 (for example 1 and 0 respectively since there is a difference on
this bit position) and we end up with 2 · pmax

−1 pairs. Then, we can undo the
last round of QX for the known bits from Y1 and Y2. We consider that a guess
passes the test if it verifies the conditions on the number of colliding values on
the colliding bit positions. For one of these 2 · pmax

−1 pairs (in our example
(Q−1

1 (Y1), Q
−1
0 (Y2))), the number of colliding bit positions will be imax. When

this is the case, if the guess on the bit of X1 and X2 was incorrect, we have a
probability of 2−imax+1 to pass the test, while we will pass it with probability
one if the guess was correct. Finally, we have determined one bit of each key K1

and K2 with a complexity of 2 · pmax
−1, which in our example would be 23.72.

We can continue the process by considering e = k−2 and pmax
−1 values from

Uk−2 that have a key bit at position k−1. Following the same method as before,
we will recover one key bit, i.e. the one at position k − 1 in X when we have 18
colliding bits before the step k − 1 of QX . Let us remark here that in practice
we do not have to wait for having a collision on 18 bits, but most of the time
collisions on a different number of bits will also be enough for determining if
a guess passes the test or not. We can repeat this step in order to obtain the
biggest possible number of key bits and determining each bit will add at most a
complexity of pmax

−1.
The next steps depend on the number of bits that we have already determined.

All in all, we conjecture that when both bit permutations behave like random
ones, the complexity will not exceed 2 · c · pmax

−1.

8 Conclusion

We have presented some new and practical analysis of ARMADILLO2. Notably
a free-start and semi-free-start collision attacks for the full ARMADILLO2 hash

Practical Cryptanalysis of ARMADILLO2 161

functions. Extending this work to real collisions (i.e. with a predefined IV) might
be possible but it is not very appealing because it is likely that several message
blocks are required (all versions have c > m) and therefore the task of the
cryptanalyst would be quite complex to handle. ARMADILLO2 should not be used
in any security application since our attacks have a very low complexity. This
work and the local-linearization method is a first step in order to evaluate the
security of data-dependent bit transpositions cryptographic designs.

Acknowledgements. The authors would like to thank the anonymous referees
and the ARMADILLO2 team for their helpful comments.

References

1. Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.:
Cryptanalysis of ARMADILLO2. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 308–326. Springer, Heidelberg (2011)

2. Badel, S., Dağtekin, N., Nakahara Jr., J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedi-
cated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 398–412. Springer, Heidelberg (2010)

3. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
4. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [3], pp. 416–427
5. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:

Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

6. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [3], pp. 428–446
7. Rivest, R.L.: The RC5 Encryption Algorithm, pp. 86–96. Springer (1995)
8. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: RC6 as the AES (2000)
9. Sepehrdad, P., Sušil, P., Vaudenay, S.: Fast Key Recovery Attack on ARMADILLO1

and Variants. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 133–150.
Springer, Heidelberg (2011)

A Implementation of the Collision Attacks for k = 128

We implemented all attacks for k = 128 and they require less than a second and
negligible memory on an average computer (Intel Core2 Duo CPU @ 2.13 GHz)
in order to find a collision. Since no specific σ0 and σ1 bit transpositions are
defined for ARMADILLO2, we run the attack for many randomly chosen instances
so as to ensure the soundness of our reasoning. We give here examples of (semi)-
free-start collisions for ARMADILLO2 with a σ0 and σ1 bit transpositions instance
that fulfill the criteria required in [2] for k = 128. Namely, we denote λ the
second largest eigenvalue of the matrix M = 1

4 (Pσ0 + P 128
σ0

+ Pσ1 + P 128
σ1

), then
for the σ0 and σ1 instance found we have λ = 0.87. This means that there exists
a distinguisher with advantage λ256 = 2−51.4, while our attacks have much better
advantage.

162 M. Naya-Plasencia and T. Peyrin

Free-Start Collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(ffffffffffffffffbfff, ffffffffffff) =

ARMADILLO2(fffffdffffffffffbfff, ffffffffffff) =

dfb0d8f2b763ce97f785

Semi-Free-Start Collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82e2) =

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82f0) =

26827e3d614d2fc75d64

Bit Transpositions σ0 and σ1 Used:

σ0=62, 98, 14, 114, 36, 77, 55, 3, 28, 88, 29, 122, 57, 90, 66, 52, 44, 22, 95, 118, 69, 86,

35, 56, 58, 82, 18, 97, 78, 21, 85, 101, 19, 65, 10, 6, 116, 121, 70, 99, 61, 102, 4, 91,

39, 119, 79, 16, 84, 50, 113, 45, 93, 104, 73, 112, 8, 5, 51, 9, 105, 46, 64, 94, 41, 54,

127, 67, 106, 23, 63, 49, 123, 15, 60, 81, 96, 72, 110, 37, 30, 89, 7, 92, 2, 68, 40, 32,

53, 11, 71, 26, 103, 59, 109, 111, 38, 74, 20, 48, 24, 43, 126, 117, 13, 124, 31, 33,

100, 125, 87, 27, 83, 128, 12, 42, 80, 107, 108, 17, 25, 120, 76, 75, 115, 47, 1, 34

σ1=10, 60, 111, 78, 38, 57, 110, 75, 104, 56, 88, 79, 23, 99, 16, 22, 128, 94, 120, 24, 64,

3, 6, 55, 42, 51, 43, 82, 114, 89, 26, 35, 61, 73, 77, 36, 28, 21, 105, 15, 67, 70, 113,

65, 39, 80, 122, 31,101,100, 107, 124, 18, 46, 85, 19, 49, 14, 12, 71, 86, 68, 102, 91,

58, 95, 1, 53, 83, 125, 66, 98, 81, 44, 48, 59, 27, 9, 119, 40, 45, 74, 92, 112, 93,

69, 5, 108, 106, 115, 90, 13, 84, 126, 7, 109, 54, 127, 33, 121, 62, 87, 30, 29, 63, 2,

97, 116, 4, 47, 11, 8, 34, 96, 118, 72, 52, 103, 37, 25, 123, 50, 76, 17, 20, 41, 117, 32

	Practical Cryptanalysis of ARMADILLO2
	Introduction
	The ARMADILLO2 Function
	First Tools
	Parity Preservation
	Controlled Diffusion: Practical Free-Start Collision Attack
	General Description
	Using the Freedom Degrees
	Complexity Results

	Local Linearization: Practical Semi-free-Start Collision Attack
	General Description
	Colliding on X
	Complexity Results

	Related-Key Recovery in Stream Cipher Mode
	Using Related-Keys for Recovering the Key
	Generic Complexity Estimation

	Conclusion
	References

