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Abstract. This paper presents a novel approach for multi-target track-
ing using an ensemble framework that optimally chooses target tracking
results from that of independent trackers and a detector at each time
step. The ensemble model is designed to select the best candidate scored
by a function integrating detection confidence, appearance affinity, and
smoothness constraints imposed using geometry and motion information.
Parameters of our association score function are discriminatively trained
with a max-margin framework. Optimal selection is achieved through
a hierarchical data association step that progressively associates candi-
dates to targets. By introducing a second target classifier and using the
ranking score from the pre-trained classifier as the detection confidence
measure, we add additional robustness against unreliable detections. The
proposed algorithm robustly tracks a large number of moving objects in
complex scenes with occlusions. We evaluate our approach on a variety of
public datasets and show promising improvements over state-of-the-art
methods.

1 Introduction

Visual tracking of multiple targets in complex scenes captured by a monocular,
potentially moving, and uncalibrated camera is a very challenging problem due
to measurement noise, cluttered-background, uncertainty of the target motion,
occlusions, and illumination changes [1]. While traditional methods for tracking
have focused on improving the robustness of motion models and predictive filters,
recent advances in methods for object detection |244] have led to the develop-
ment of a number of tracking-by-detection |5-H12] approaches. These methods
first apply a learned discriminative model to detect objects in each frame inde-
pendently, and then associate detections across frames to identify each object’s
unique spatio-temporal trajectory. However, varying visual properties of the ob-
ject of interest often results in false positives and missed detections. Hence, the
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(a) (b) ' (d) Occlusion

Fig. 1. Examples of output from a tracker (in red box) and a detector (in green box)

Fig. 2. Using output from both the tracker and the detector, our algorithm selects the
best candidate and associates it to the tracked target. Candidates from the tracker are
shown in red boxes and candidates from the detector are in green boxes. Solid boxes
represent the best candidate selected by the algorithm.

resulting association problem has to be resolved by inferring between-object in-
teractions using incomplete data sets. Several approaches have been proposed to
address this problem by optimizing detection assignments in the spatio-temporal
context HE, @, ) @], while other methods have focused on achieving the neces-
sary precision by coupling a robust tracker that can update its predictive model
(motion and object attributes) guided by the detection confidence and discrim-
inative features obtained from multiple cues ﬂﬂ, B, @] The improved tracking
performance reported by these methods indicates that such a combination is
desirable. Nonetheless, the positive or negative contribution of the chosen pre-
dictive model and the detector at each time step within the combination term
is not well understood. Further, it is not guaranteed that each term will have an
equivalent contribution towards tracking a target and the weighting parameters
chosen empirically could deteriorate the tracking result in previously unobserved
scenarios.

Traditional trackers that depend on the appearance model and motion predic-
tion perform poorly in the presence of abrupt motion changes and cause template
drifts. The true target gradually shifts away from the tracking template because
of the error in the motion model. In addition, tracking drifts and photometric
variations make it hard to maintain unique identities among targets and cause
frequent identity switches. On the other hand, detection results suffer from long-
term occlusion, dynamic backgrounds and low-resolution images. Since output
from either the detector or the tracker can be sparse and unreliable, one so-
lution to alleviate the problem is to create an abundant number of potential
candidates to increase the probability of finding a more accurate candidate for
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the target of interest. For example, the visual tracker sampler [17] samples a
large number of trackers from the tracker space dynamically to compensate for
target variations. Other approaches have also combined the tracker and detector
together [9,[16] but limited the role of the detector so as to assist the tracker as a
confidence measurement tool. The benefit of using output from the tracker and
detector directly as association candidates for the tracked target, however, has
never been fully exploited. We argue that results obtained from the tracker and
detector generate redundant association candidates and can complement each
other in different scenarios. For example, a drifting tracking result can be cor-
rected by the detection result (Figure[I(a)) and an imprecise detection result can
be replaced by a better tracking prediction (Figure [[[(b)). In the case of missed
detection (Figure[Il(c)) and occlusion (Figure[l(d)), the prediction power of the
tracker may help to maintain the position and identity of the tracked target.
Similarity measurement of appearance model alone is unreliable and the explo-
ration of the interplay among multiple cues in a tracking environment yields
promising results |9, [7]. In this paper, we propose a strategy to optimize the
association by selecting output of a detector or a tracker at each time step to
increase the overall tracking accuracy and precision.
Our method makes the following contributions:

— We present a novel ensemble framework that leverages redundancy and diver-
sity between tracking and detection for robust multi-target tracking. Instead
of using detection and classification results to guide the tracker, we treat the
tracker and object detector as two independent identities and we keep both
their results as association candidates for the tracked target. In each frame,
we select the best candidate and assign it to the tracked target (Figure [2).
The assignment is scored by a function integrating detection confidence, ap-
pearance affinity, and smoothness constraints imposed using geometry and
motion information.

— Our approach exploits the discriminative power of the tracker and detector.
The weighting factor of each term used in the score function is discrimi-
natively trained. The methodology of data mining for hard negative exam-
ples [2] is applied to handle a very large set of artificially generated negative
samples.

— In order to deal with unreliable detections, we add additional robustness to
our model by mapping the detection confidence into a ranking score by a
pre-trained classifier based on multi-scale HOG and texture information.

2 Related work

Building on the success of state-of-the-art object detection methods, object
tracking appears to be “easier” to achieve if best matching detection targets
can be transitively linked. However, due to the numerous false positives and
missed targets in detection results, local data association based on affinity mea-
sures between contiguous detections is hard to achieve, hence limiting the abil-
ity to find a unique trajectory for each tracked target without drifting |18, l6].
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Fig. 3. Framework of our tracking system

On the other hand, global data association tries to solve the problem by optimiz-
ing the linkage problem of multiple trajectories simultaneously [13,114, [11]. Since
global methods tend to be computationally expensive, they usually start by de-
tecting short tracklets and iteratively associating them into longer tracks. Leibe
et al. [19] proposed to couple the output of detector and tracjectory estimation,
but trajectories ultimately rely on detections. To overcome the difficulties faced
by the global association approaches, Breitenstein et al. [9] proposed to deal with
the detection uncertainty in a particle filtering framework in which unreliable
detection information is complemented by the prediction power of the tracker. In
order to increase the association confidence, a boosted classifier is trained online
to assess the similarity of tracker-detection pairs. Independent from the detec-
tor’s output, the classifier term improves the robustness of the tracking result.
This coupling framework has also been applied to challenging sport videos |16],
which uses a vote-based confidence map to localize people, and the motion model
is estimated by the optical flow.

Our approach differs from other data association based tracking methods that
perform tracking by associating the output of either the detector or basic tracker
only. Unlike these methods, our data association works on results of both a
detector and multiple basic trackers.

3 System Overview

Our system is initialized with a human detector and several independent human
trackers. Each independent tracker deals with one target. As illustrated in Fig-
ure [ after collecting redundant candidates from outputs of both the detector
and independent trackers in testing stage, the hierarchical data association step
optimizes the association between tracked targets and candidates. We reduce
the association problem to an assignment problem. To manage time complexity,
we adopt a greedy-search based association framework using the score matrix
between candidates and targets as detailed in Section @l The score is computed
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by the dot product between a set of learned weights and features extracted
from multiple cues. In addition to color histogram, optical flow, and motion fea-
tures, we learn an additional target classifier to measure the object detection
confidence. Those weights are trained using a max-margin framework, which is
designed to give high affinity score for associating candidates with true tracked
targets and low score when tracked targets are associated with drifting, false
positive candidates or candidates belonging to different targets. To learn the
weight parameter, positive samples are obtained from the ground truth and a
large number of negative samples are artificially generated to prevent sample
selection bias as described in Section Bl We validate our method using publicly
available datasets under different challenging conditions and demonstrate supe-
rior tracking results that outperform the state-of-the-art algorithms, particularly
in terms of accuracy.

4 Ensemble Model

We formulate the multi-object tracking problem as a sum assignment problem
that associates tracking candidates obtained from outputs of the tracker and de-
tector to tracked targets of interest. Let S = {s1,..., s,,} be all tracked targets,
where m is the number of objects currently being tracked. Let R = {r1,..., 7}
indicate the set of all independent trackers. In this paper, a color based par-
ticle filter is implemented for each independent tracker r; € R. Each particle
filter tracker deals with one target and T = {t1,..., ¢} represents the output
of particle filter trackers. The detector’s output is denoted as D = {dy,...,d,},
where n is the number of detection outputs. The set D U T represents all m +n
tracking candidates. The aim of the system is to find the optimal assignment for
all tracked targets S in each frame ¢, which is measured by the association score
of the form:

m
arg maXZ B @ ()
L) S—— (1)
1€8S,jebDuT

st. Vol xl p#qifa#b,

where xf indicates that the candidate j is assigned to tracked target i, {j} de-
notes a set of selected candidates, § is a vector of model parameters which is
learned as presented in Section [B @;(-) represents the association feature set in
the current frame, and 3 - @, is the score function. The proposed formulation
finds optimal links between tracked targets and candidates provided by both the
tracker and the detector by assigning at most one candidate to at most one tar-
get, and the assignment is evaluated by the affinity score defined in Equation [I1
The association feature set = [¢p1, 2, 3, da, Ps5, P] combines information from
different feature spaces, namely the classification confidence, the color histogram,
the motion feature and the optical flow feature. Each component is described
below in detail.
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Fig. 4. Visualization of the classification confidence map

Classification Confidence. The classification confidence (¢1) is proportional
to the likelihood that the object of interest appears at a given position, and the
confidence is derived from the classification result of a binary classifier introduced
to gain additional robustness to our discriminative framework ﬂg] The classifier
scores a feature vector x with a dot product function w -z, where w is a vector of
weighting parameters and x is the feature vector extracted from a given image
patch. Weights w are trained using a max-margin framework, the details of which
are provided in Section Bl The feature vector x is the concatenation of multi-
scale HOG @] and LBP } feature sets. The HOG feature is extracted from
a two-level image pyramid. We perform PCA on each HOG feature to manage
the curse of dimensionality and improve prediction performance. The cumulative
energy threshold for selecting eigenvectors is set at 95%. For image patches with
negative score, their classification confidence is set to zero. For those with positive
score, the score is normalized by its ranking among scores of positive training
samples. For example, an image patch with classification confidence of 0.95 will
have higher score than 95% of positive training samples. Figure @l illustrates the
confidence map after applying the binary classifier for human detection. As can
be seen, areas of detection targets yield high confidence value.

Color Histogram. The 3D color histogram is built in the Red-Green-Intensity
(RGI) space with 5 bins per channel. Given the training pairs, we perform a
kernel density estimate for the target and candidate. The similarity between two
kernels g(x.) and g(z:) is measured by the Bhattacharyya coefficient B, and the
likelihood is given by:

$2 o< exp(—=A(l — Blg(zc), 9(1)])) , (2)

where ) is set to be 5.

Motion Feature. The speed, object scale, and angle represent the motion fea-
ture of objects. The speed is modeled by the Normal distribution;

¢3 X fs(sil s u®,0%), where Sfjl is the speed ratio between two frames and f
is the probability density function. The angle likelihood is modeled by the von
Mises distribution @], which is formulated as:

K%cos(0—p®)

27‘(]()(/{‘1) ’ (3)

¢g =
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where Ip(.) is the modified Bessel function of order zero. The scale likelihood is
modeled by the Normal distribution; ¢5 o fi(I; u!,a'), where [ is the scale be-
tween two frames and f; is the probability density function. Model parameters
{u®, o, u®, k% p', o'} are learned from positive training samples.

Optical Flow Feature. The optical flow is precalculated according to [23]. The
dominant motion of each region is encoded by a 2D histogram that quantifies
both the magnitude and angle of the motion with 10 bins and 8 bins, respectively.
The Bhattacharyya coefficient B is used to measure the similarity of histograms
{H¢, H.} between the target and candidate. The optical flow score function is
given by ¢g x exp(—7(1 — B[Hy, H.])), where 7 is set to be 5.

4.1 Hierarchical Data Association

Our algorithm employs a hierarchical association strategy to solve Equation [I]
by progressively associating outputs of independent trackers and the detector to
tracked targets. We use the word “active” to distinguish a target which is not
occluded. The association hierarchy consists of three levels. In each level, the as-
signment is obtained by the Hungarian algorithm. At the first level, it finds the
best association between active targets and all candidates. At the second level,
the occluded targets are being associated to all unassigned candidates of the
detector. If the best association score is below a threshold, the occluded target
is moved to the third level, in which, it will be linked to one of the unassigned
candidates of the independent trackers based on the association score. The de-
tails of the algorithm are described in Algorithm [

Greedy Search by Hungarian Algorithm. Given m targets, we solve the
assignment problem for detector’s n candidates and independent trackers’ m
candidates through the Hungarian algorithm. The score matrix is defined as:

1 .2 n n+1
S% S% Lo 87 S1 *:)_C; ce. —0O0
n n
83 85 ... 8y  —00 8§57 ... —00
1 .2 n n+m
Sy Sip oo+ Sy —00 —00 ... SI
~ -~ ~ -

Detector’s Candidates Trackers’ Candidates

The score in S is computed by s{ =4- (P(xf ) where ¢ and j are row and column,
respectively. The negative infinity value of the off-diagonal components repre-
sents self-association rule of the tracking result [14] as it is designed to be linked
to one specific target only.

Occlusion Handling. We set the “enter” and “exit” regions along image bor-
ders after the first two frames in a typical surveillance setting similar to [9]. If
the best association score for a target is below a threshold in the first level asso-
ciation, it will be marked as “occluded”. In addition, an assigned target in the
first level with a lower classification confidence score than the threshold will also
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be marked as “occluded”. We activate an occluded target only if its associated
candidate returns a classification confidence score greater than the threshold.
For an occluded target, the association feature set is not updated until it be-
comes active again. An occluded target will be deleted if it stays in the “exit”
region for more than 5 frames or remains “occluded” for more than 20 frames in
the “non-exit” regions. Deletion of an active target depends on its position with
respect to the “exit” region.

Algorithm 1: Association Framework
Input: Targets {1,...,4,...,m}, Candidates {1,...,4,...,(n+m)}.
Output: Association Results.

1 Compute the association feature for all active targets and candidates;
2 Compute the score SZ =p- @(mf) and enter it to the score matrix;

3 Apply the Hungarian algorithm to solve the assignment problem;

4 for each assignment (i,7) do

5 if s <threshold or ¢1(j) <threshold then

6 invalidate the assignment;

7 end

8 end

9

Recompute the score matrix for all occluded targets and unassigned
detection candidates;

10 Apply the Hungarian algorithm to solve the assignment problem:;

11 for each assignment (i,7) do

12 if s/ <threshold or ¢1(j) <threshold then

13 invalidate the assignment;

14 end

15 end

16 if active target is assigned then

17 update the feature set;

18 else

19 active target is set as occluded;

20 end

21 if occluded target is assigned then

22 occluded target is set as active and its feature set is updated;

23 end

24 For all unassigned occluded targets, associate them to corresponding
tracking result.

4.2 Detector and Independent Trackers

We use a state-of-the-art deformable part based detector to detect the occur-
rences of human targets in every frame [2]. The tracker we use is similar to [24]
where the particle’s observation model is built upon the RGI color histogram [9].
We keep track of two frames for updating the observation template: one is the
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first frame that the target appears in and the other is the latest frame in which
the target is in the “active” state. A new independent tracker is initialized for a
target that has higher classification confidence value than the threshold in two
continuous frames and has no existing tracker associated to it.

5 Discriminative Learning

The model parameters § in Equation [ is learned discriminatively. Consider a
training set {(y;, @(0;))}¥;, where y; € {+1,—1} is the label and ®(0;) € R"
is the feature vector extracted from the training instance o; that includes an
assigned candidate. The objective is to learn a model that assigns the score to
the instance with a function of the form 8- @(-), where /3 is a vector of model
parameters. The formulation, in analogy to classical SVMs, leads to the following
optimization problem:

N
£(8) = miin , 18] +C S €(5: (#(01). ) (@)
i=1

where £(8; (9(0;),y:)) = max{0,1 — y;(8,P(0;))} is the hinge loss function and
the constant C'is chosen experimentally as the weight for the penalty. Stochastic
sub-gradient method |2, [25] is applied for solving this problem.

Typically positive samples are given and we manually generate the “hard”
negative samples. For training, negative samples are randomly generated for
three different kinds of scenarios: tracking drift, false positive and mismatch. As
shown in Figure[Bl(b), samples for tracking drift are picked as image patches that
have between 0% ~ 25% overlap with the ground truth. False positive accounts
for cases where there is no overlap between tracked objects in the ground truth
and candidates obtained from the tracker and detector (Figure[Blc)). Mismatch
represents identity switch, in which a tracked target is connected to a wrong
candidate (Figure Bl(d)). Compared with the number of positive samples, the
number of negative instances is very large. To deal with a large set of samples, we
apply the data-mining algorithm proposed in |2] for training our model efficiently.

6 Experiments

6.1 Datasets

We evaluate our tracking algorithm on four public challenging datasets: TUD
Crossing, TUD Campus, ETHZ Central and UBC Hockey [9]. The video in the
UBC Hockey dataset is acquired by a moving camera and static cameras are
used for videos in other datasets. These four datasets present a wide range of
challenges due to heavy inter-person occlusion, poor image quality, and low image
contrast between targets and the background. Videos in these datasets also cover
different viewpoints and capture various types of movements. In all experiments,
we define “entry” and “exit” zones manually for each sequence and no other scene
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Fig. 5. Positive and negative samples generated for the tracking problem: (a) correct
tracking, (b) tracking drift, (c) false positive, (d) mismatch

or calibration knowledge is leveraged. We employ the discriminatively trained
deformable parts model ﬂﬂ] as the human detector. The detector uses publicly
available and pre-trained model for TUD Crossing and TUD Campus datasets.
The deformable parts model is re-trained for ETHZ Central and UBC Hockey
datasets to boost the detection rate as the quality of images is much poorer in
these videos. None of the video frames in the dectector training are used for
testing.

6.2 Parameter Training

We obtained the model parameter 3 as described in Section Bl We use the same
parameter for TUD Crossing and TUD Campus datasets, which is trained on
the first 25 frames of the TUD Crossing video. The parameter § is trained for
ETHZ Central by using the first video sequence in the dataset and our tracking
algorithm is tested on the second video sequence. For UBC Hockey, the first 25
frames are used for training. None of the video frames in the parameter training
set are used for testing.

6.3 Quantitative Evaluation

We adopt CLEAR MOT metrics ﬂﬁ] to evaluate the tracking performance of our
algorithm. Key measurements of the metrics include: precision score (MOTP)
measured by intersection over union of bounding boxes, and an accuracy score
(MOTA) which is composed of false negative rate (FN), false positive rate (FP),
and number of ID switches (ID Sw.). Results of our algorithm are reported in
Table [1 (shown in top row) after conducting experiments on aforementioned
four datasets. In general, the results indicate that our approach achieves high
tracking accuracy with very few number of ID switches. In our experiments,
false positives usually are caused by the drift of occluded targets since it is
hard to update the motion model in time during occlusion. For example, the
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rapid change of movements in the UBC Hockey video increases the chance of
false positives. The failure of the human detector is the main reason for false
negatives in the result since several persons are not detected and corresponding
independent trackers are not initialized in the video. A typical detection failure
happens when occlusions persist over several video frames. For example, as shown
in Figure[fl one of the persons sitting in the lower-right corner is never detected.
Occlusion is also the culprit for ID switches. If a newly detected person bears
similar appearance with an occluded target, the ID of the occluded one may be
mistakenly assigned to another target.

For comparison, we list the results of three competing approaches for these
sequences: (i) On-line Multi-Person Tracking-by-Detection [9] on TUD Crossing,
TUD Campus, ETHZ Central and UBC Hockey; (ii) Coupled detection and
trajectory estimation [19] on ETHZ Central; (iii) Boosted particle filter [27] on
UBC Hockey. As shown in Table [II we outperform the competing approaches
on all datasets in terms of tracking accuracy. As for the tracking precision, our
results are comparable with the best reported performance measures.

Table 1. CLEAR MOT evaluation results on four datasets. Our results are in the top
row for each dataset. The best results are in bold.

Dataset MOTP(%) MOTA(%) FP(%) FN(%) ID Sw.
TUD Crossing 70.77 89.38 1.09 9.33 2
TUD Crossing [9] 71.00 84.30 140 1410 2
TUD Campus 67.76 84.82 0.00 15.18 O
TUD Campus [9] 67.00 73.30  0.10 2640 2
ETHZ Central 71.49 75.40 0.36 24.24 O
ETHZ Central [9] 70.00 7290 0.30 268 O
ETHZ Central [19] 66.00 33.80 14.70 51.30 5
UBC Hockey 71.61 91.75 176 6.49 O
UBC Hockey [9] 57.00 76.50 1.20 2230 O
UBC Hockey [27] 51.00 67.80 0.00 31.30 11

To fully evaluate the benefit of the ensemble tracking-by-detection frame-
work proposed in this paper, we also present the performance of component-wise
analysis. The default method used the output of both the part-based detector
and independent particle filter trackers to accomplish data association. Vari-
ant (a) leverages output of particle filter trackers alone as tracking candidates
while variant (b) leverages output of only the part-based detector. As shown in
Table 2], the default method performs better in term of accuracy, false positive,
false negative and ID switches over the result of variants due to the optimal
selection of output of both components. The lower precision score of the default
method in three of four datasets is related to the way MOTP is computed. Since
MOTP only measures the positional deviation of detected targets from their
ground truth, an increase in the number of detected targets can lead to lower
overall precision. This is the case since the default method is able to track a
greater number of targets than either of the variants.
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Table 2. CLEAR MOT evaluation results on component-wise evaluation of our ap-
proach. Variant (a) leverages output of the independent trackers only. Variant (b)
leverages output the detector only. The best results are in bold.

Dataset MOTP (%) MOTA(%) FP(%) FN(%) ID Sw.
TUD Crossing (Default) 70.77 89.38 1.09 9.33 2
TUD Crossing (a) 63.06 58.13 20.04 21.63 19
TUD Crossing (b) 69.46 82.14 6.85 10.81 36
TUD Campus (Default) 67.76 84.82 0.00 15.18 0
TUD Campus (a) 62.80 4719 1815 3399 O
TUD Campus (b) 70.08 59.74 17.16 2244 3
ETHZ Central (Default) 71.49 75.4 0.36 24.24 O
ETHZ Central (a) 59.25 26.74 3797 3494 23
ETHZ Central (b) 75.59 7291 196 2478 7
UBC Hockey (Default) 71.61 91.75 1.76 6.49 O
UBC Hockey (a) 58.32 80.41 4.85 14.56 26
UBC Hockey (b) 73.42 82.84 341 13.57 10

6.4 Qualitative Evaluation

Figure [6] shows our qualitative evaluation. The first row presents the ability of
our approach to keep the identity for target #10 even when the target has been
occluded by multiple targets in the sequence. The scenario in the second row
shows that we can keep updating the location of occluded targets by using the
tracker’s prediction in the case of missing detections. The third row demonstrates
that our tracker can differentiate targets well when they are very close to each
other. The last row shows a sequence shot from a moving camera. Although
the motion model loses its accuracy due to abrupt changes of movements, our
tracker can correct tracking drifts by switching to associate detection results to
tracked targets.

7 Conclusion

We have presented a novel ensemble framework based on the tracking-by-
detection approach. Association candidates in this integrated model come from
independent trackers and object detector. The best candidate is selected based
on a score function that integrates classification confidence, appearance affinity,
and smoothness constraints imposed using geometry and motion information.
Model parameters of the score function are discriminatively trained. In order to
improve the detection confidence in complex scenes, the framework incorporates
an additional target classifier that is also trained discriminatively. As our ex-
periments show, the proposed approach achieves good performance in different
datasets with a variety of scenarios and outperforms other state-of-the-art meth-
ods. Finally, the performance of the algorithm could be improved if we enhance
the discriminative model for visual matching in the tracker by on-line metric
learning.
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Frame 095 Frame 105 Frame 116 Frame 127

(a) Keep 1dent1ty under multiple occlusmns

Frame 113 Frame 124 Frame 130 Frame 140

(b) Keep tracking people in the case of missing detections

Frame 730 Frame 740 Frame 750 Frame 780 Frame 784

(d) Correct the tracking drift in the moving camera scenario

Fig. 6. Tracking results of our approach on TUD Crossing, TUD Campus, ETHZ
Central and UBC Hockey datasets
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