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Abstract. As linguistic models incorporate more subtle nuances of language and
its structure, standard inference techniques can fall behind. These models are of-
ten tightly coupled such that they defy clever dynamic programming tricks. Here
we demonstrate that Sequential Monte Carlo approaches, i.e. particle filters, are
well suited to approximating such models. We implement two particle filters,
which jointly sample either sentences or word types, and incorporate them into
a Particle Gibbs sampler for Bayesian inference of syntactic part-of-speech cat-
egories. We analyze the behavior of the samplers and compare them to an exact
block sentence sampler, a local sampler, and an existing heuristic word type sam-
pler. We also explore the benefits of mixing Particle Gibbs and standard samplers.

1 Introduction

Modern research is steadily revealing more of the subtle structure of natural language
to create increasingly intricate models. Recent advances in Bayesian non-parametrics
have been employed by Computational Linguistics researchers to create effective unsu-
pervised models of the latent structure text [1–4]. These models predominantly make
use of the Dirichlet Process (DP), and its generalization the Pitman-Yor Process (PYP),
in part due to the ease of deriving a collapsed Gibbs sampler for its inference. However
this ease of inference comes at a cost; collapsed Gibbs samplers mix poorly due to the
tight global dependencies present in the conditional distributions sampled from [5].

Previously [5] investigated techniques for alleviating the influence of long range con-
ditional dependencies by simultaneously sampling groups of latent variables, however
this approach is specific to models based on the simpler Dirichlet distribution. Here we
present a general inference approach based on Sequential Monte Carlo (SMC) suitable
for more advance models that employ Pitman-Yor Process priors.

Sequential Monte Carlo (SMC) methods, like particle filters, are particularly well
suited to estimating tightly coupled distributions [6]. Particle filters sample sequences
of latent variable assignments by concurrently generating several representative se-
quences consistent with a model’s conditional probability distribution. The sequential
nature of the sampling simplifies inference by ignoring ambiguous correlations with
future latent variables at the cost of sampling the sequence multiple times. The few ap-
plications of particle filters in computational linguistics generally focus on the online
nature of SMC [7, 8]. However, in this paper we demonstrate that batch applications
benefit from the power of SMC to generate samples from tightly coupled distributions
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that would otherwise need to be approximated. Furthermore, the time cost of the addi-
tional samples generated by SMC can be mitigated by generating them in parallel.

In this paper we focus on the task of unsupervised part-of-speech (PoS) induction,
where we seek to label tokens in a corpus with the syntactic role they play. In particular
we describe and evaluate novel SMC inference algorithms for the Pitman-Yor Hid-
den Markov Model (PYP-HMM) first proposed in [4]. This model represents the state-
of-the-art for unsupervised PoS induction, but the complex conditional dependencies
present in the posterior led the authors of [4] to resort to a heuristic inference startegy
and unrealistic restrictions on the model to achieve their highest reported results.

We start in Section 2 by introducing PYP-HMM model and its previously proposed
inference algorithms. Section 3 introduces the Sequential Importance Sampling (SIS)
algorithm, a basic SMC method that generates samples from the model’s posterior. Us-
ing this approach we describe two novel inference algorithms for the PYP-HMM: a
simple sentence-based block sampler (3.1) and a more complicated type-based sampler
(3.2). We evaluate these algorithms in Section 4, analyzing their behavior in compar-
isons to the previously proposed state-of-the-art approaches. In summary we show that
our SMC based algorithms are able to improve inference, finding higher probability
modes, and task specific accuracies.

2 The Pitman-Yor Hidden Markov Model

The PYP-HMM model of PoS induction exhibits the tightly coupled correlations that
complicate many standard inference methods [4]. The model applies a hierarchical
Pitman-Yor process (PYP) prior to a trigram hidden Markov model (HMM) to jointly
model the distribution of a sequence of latent word tags, t, and word tokens, w. The
joint probability defined by the transition, Pθ(tl|tn−1, tn−2), and emission, Pθ(wn|tn),
distributions of a trigram HMM is

Pθ(t,w) =

N+1∏

n=1

Pθ(tl|tn−1, tn−2)Pθ(wn|tn)

where N = |t| = |w| and the special tag $ is added to denote the sentence boundaries.
The model defines the transition and emission distributions to be multinomial:

tn|tn−1, tn−2, T ∼ Ttn−1,tn−2

wn|tn, E ∼ Etn

The PYP-HMM draws the above multinomial distributions from a hierarchical Pitman-
Yor Process prior. The hierarchical prior can be intuitively understood to smooth the
trigram transition distributions with bigram and unigram distributions in a similar man-
ner to an ngram language model [9]. This backoff structure greatly reduces sparsity in
the trigram distributions and is achieved by chaining together the PYPs through their
base distributions:
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Tij |aT , bT , Bi ∼ PYP(aT , bT , Bi)

Bi|aB, bB, U ∼ PYP(aB, bb, U)

U |aU , bU ∼ PYP(aU , bU ,Uniform).

Ei|aE , bE , C ∼ PYP(aE , bE, Ci),

where Tij , Bi, and U are trigram, bigram, and unigram transition distributions respec-
tively and Ci is either a uniform distribution (PYP-HMM) or a bigram character lan-
guage model distribution (PYP-HMM+LM, intended to model basic morphology).

Draws from the posterior of the hierarchical PYP can be calculated with a variant of
the Chinese Restaraunt Process (CRP) called the Chinese Restaurant Franchise (CRF)
[9, 1]. In the CRP analogy, each latent variable (tag) in a sequence is represented by
a customer entering a restaurant and sitting at one of an infinite number of tables. A
customer chooses to sit at a table in a restaurant according to the probability

P (zn = k|z1:n−1) =

{
c−k −a

n−1+b 1 ≤ k ≤ K−
K−a+b
n−1+b k = K− + 1

(1)

where zn is the index of the table chosen by the nth customer to the restaurant, z1:n−1

is the seating arrangement of the previous n − 1 customers to enter, c−k is the count of
the customers at table k, and K− is the total number of tables chosen by the previous
n − 1 customers. All customers at a table share the same dish, representing the value
assigned to the latent variables. When customers sit at an empty table, a new dish is
assigned to that table according to the base distribution of the PYP. To expand the CRP
analogy to the CRF for hierarchical PYPs, when a customer sits at a new table, a new
customer enters the restaurant representing the PYP of the base distribution.

Blunsom and Cohn [4] explored two Gibbs sampling methods for inference with the
PYP-HMM model. The first individually samples tag assignments for each token. The
second employs a tactic shown to be effective by earlier works by constraining inference
to only one tag per word type (PYP-1HMM). However marginalizing over all possible
table assignments for more than a single tag is intractable, and must be approximated.
Blunsom and Cohn [4] approximates the PYP-1HMM tag assignment probabilities for
a particular sample according to heuristic fractional table counts. Specific details of this
model and associated samplers can be found in [4].

In this paper we present a principled SMC based sampler that allows for the simul-
taneous sampling of all the tags associated with a given word type without resorting to
heuristics. This type based sampler achieves state-of-the-art performance without the
requirement that all words of a given type share the same tag. This one-tag-per-type as-
sumption is clearly false for syntactic categories (e.g. sample as a verb and a noun), thus
its elimination is a step on the path to high performance unsupervised PoS induction.

3 Sequential Monte Carlo

Sequential Monte Carlo was introduced in 1993 as a Bayesian estimator for signal pro-
cessing problems with strong non-linear conditional dependencies [10]. Since then,
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SMC methods have been adopted by many fields, including statistics, biology, eco-
nomics, etc. [11–13]. The SMC approach is the probabilistic analogue of the beam
search heuristic, where the beam width can be compared to the number of particles
and pruning is analogous to resampling. The basic SMC approach serves as the basis
for several variants. Many SMC implementations resample the population of particles
from the existing population to minimize the effect of increasing sample variance with
increasing sequence length [14]. Particle smoothing variants of SMC reduce the relative
variance of marginals early in the sequence, as well improving the diversity of the final
sample [15]. Particle Markov chain Monte Carlo (PMCMC) formally augments classic
Markov chain Monte Carlo (MCMC) approaches, like Gibbs sampling, with samples
generated by particle filters [6].

While MCMC approximates a distribution as the average of a sequence of samples
taken from the posterior of the distribution, SMC approximates a distribution as the
importance weighted sum of several sequentially generated samples, called particles.
This article describes two SMC samplers that jointly sample multiple tag assignments:
a sentence based block sampler (sent) and a word type based block sampler (type).
The basics of particle filtering are outlined below, while the implementation specifics
of the sent and type particle filters are described in secions 3.1 and 3.2, respectively.

SMC is essentially the probabilistic analogue of the beam search heuristic. SMC
stores P sequences, analogous to beam width, and extends each incrementally accord-
ing to a proposal distribution qn, similar to the heuristic cost function in beam search.
Many particle filtering implementations also include a resampling step which acts like
pruning by reducing the number of unlikely sequences.

We implemented Sequential Importance Sampling (SIS), detailed by Doucet and
Johansen [16], to approximate joint samples from the sentence and word type distri-
butions. This approach approximates a target distribution, πn(x1:n) =

γn(x1:n)
Zn

, of the
sequence, x1:n, of n random variables, that is γn(x1:n) calculates the unnormalized
density of x1:n.

SIS initilizes each particle p ∈ [1, P ] by sampling from the initial proposal distribu-
tion q1(x

p
1), where xp

n is the value assigned to the n-th latent variable for particle p. The
algorithm then sequentially extends each particle according to the conditional proposal
distribution qn(x

p
n|xp

1:n), where xp
1:n is the sequence of values assigned to the first n

latent variables in particle p. After extending a particle p, SIS updates the importance
weight ωp

n = ωp
n−1 ∗ αn(x

p
1:n). The weight update, defined as

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
, (2)

accounts for the discrepancy between the proposal distribution, qn, and the target dis-
tribution, πn, without normalizing over x1:n, which becomes intractable for longer
sequences even in discrete domains. The normalizing constant of the target distribu-
tion is approximately Zn ≈ ∑P

p=1 ω
p
n and the unnormalized density is γn(x1:n) ≈

∑P
p=1 ω

p
nifxp

1:n = x1:n. The particles can also be used to generate an unbiased sample
from πn by choosing a particle p proportional to its weight ωp

n.
Andrieu et al. [6] shows that to ensure the samples generated by SMC for a Gibbs

sampler has the target distribution as the invariant density, the particle filter must be
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modified to perform a conditional SMC update. This means that the particle filter gau-
rantees that one of the final particles is assigned the same values as the previous Gibbs
iteration. Our implementation of the conditional SMC update reserves one special parti-
cle, 0, for which the proposal distribution always chooses the previous iteration’s value
at that site.

3.1 Sentence Sampling

The sent particle filter samples blocks of tag assignments tS1:n for a sentence, S, com-
posed of tokens,wS

1:n. Sampling an entire sentence minimizes the risk of assigning a tag
with a high probability given its local context but minimal probability given the entire
sentence. Sentences can be sampled by ignoring table counts while sampling a proposal
sentence, incorporating them after the fact with a Metropolis-Hastings acceptance test
[17]. The Metropolis-Hastings step simplifies the sentence block particle filter further
by not requiring the conditional SMC update.

While there is already a tractable dynamic programming approach to sampling an
entire sentence based on the Forward-Backward algorithm, particle filtering the sen-
tences PYP-HMM model should prove beneficial. For the trigram HMM defined by the
model, the forward-backward sampling approach has time complexity in O(NT 3) for
a sentence of length N with T possible tag assignments at each site. Particle filters with
P particles can approximate these samples in O(NTP ) time, which becomes much
faster as T increases.

Sampling of sentence S begins by removing all of the transitions and emissions in
S from the table counts, z, resulting in the table counts z−S of tag assignments t−S

the values assigned to the variables outside of S. For each site index n ∈ [1, N ] in
the sentence, the particle filter chooses the new tag assignment, tS,pn , for each particle
p ∈ [1, P ] from the sentence proposal distribution,

qSn (t
S,p
n |tS,p1:n−1) ∝ P (tS,pn |tS,pn−2, t

S,p
n−1, t

−S , z−S)

× P (wS,p
n |tS,pn , t−S , z−S ,w−S).

After each new tag is assigned, the particle’s weight is updated according to equation
(2). The simplicity of the proposal density hints at the advantage of particle filtering
over forward-backward sampling: it tracks onlyP histories and their weights rather than
tracking the probability of over all possible histories. Once each particle has assigned a
value to each site in the sentence, one tag sequence is chosen proportional to its particle
weight, ωS,p

N .

3.2 Type Sampling

The type sampling case for the PYP-HMM is more complicated than the sent sampler.
The long-range couplings defined by the hierarchical PYP priors strongly influence the
joint distribution of tags assigned to tokens of the same word type [5]. Therefore, the
affects of the seating decisions of new customers cannot be postponed during filtering
as in sentence sampling. To account for this, the type particle filter samples sequences
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of seating arrangements and tag assignments jointly, xW
1:n = (tW1:n, z

W
1:n), for the word-

type, W . The final table counts are resampled once a tag assignment has been chosen
from the particles.

Tracking the seating arrangement history for each particle adds an additional compli-
cation to the type particle filter. The exchangeability of seating decisions means that
only counts of customers are necessary to represent the history. Each particle represents
both a tag sequence, tW,p

1:n , and the count deltas, zW,p
1:n . The count deltas of each particle

are stored in a hash table that maps a dish in one of the CRF restaurants to the number
of tables serving that dish and the total number of customers seated at those tables. The
count delta hash table ensures that it has sufficient data to calculate the correct proba-
bilities (per equation (1)) by storing any counts that are different from the base counts,
z−W , and defering to the base counts for any counts it does not have stored.

At each token occurence n, the next tag assignment, tW,p
n for each particle p ∈ [1, P ]

is chosen first according to the word type proposal distribution

qWn (tW,p
n |tW,p

1:n−1, z
W,p
1:n−1) ∝

P (tW,p
n |c−2

n , c−1
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (c+1
n |c−1

n , tW,p
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (c+2
n |tW,p

n , c+1
n , t−W,p

1:n−1, z
−W,p
1:n−1)

× P (wW
n |tW,p

n , t−W,p
1:n−1, z

−W,p
1:n−1,w

−W,p
1:n−1).

In this case, c±k
n represents a tag in the context of site tWn offset by o, while t−W,p

1:n−1,

zW,p
1:n−1, and w−W,p

1:n−1 represent the tag assignments, table counts, and word token values
chosen by particle p as well as the values at all of the sites where a word token of type W
does not appear. This proposal distribution ignores changes to the seating arrangement
between the three transitions involving the site n. The specific seating arrangement of
a particle is chosen after the tag choice, at which point the weights are updated by the
result of equation (2). As with the sent sampler, once all of the particles have been
sampled, one of them is sampled with probability proportional to its weight. This final
sample is a sample from the true target probability.

As mentioned earlier, the sequence of particle approximations do not have the target
distribution as invariant unless they use the conditional SMC update. Therefore, a spe-
cial 0th particle is automatically assigned the value from the prior iteration of the Gibbs
sampler at each site n, though the proposal probability qWn (tW,0

n |tW,p
1:n−1, z

W,p
1:n−1) still

has to be calculated to update the weight ωW,p
n properly. This ensures that the type

sampler has a non-zero probability of reverting to the prior iteration’s sequence.

4 Experiments and Results

We aim to explore several aspects of both the PG sampler and the specifics of the PoS
inference task. Firstly, the motivation of the PG implementations is to allow better infer-
ence on tightly coupled models. This suggests that the PG samplers should mix better
than the local sampler, finding the mode of the model in fewer iterations. The type sam-
pler should perform especially better with the character-LM, which assigns a higher
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likelihood when words of the same type are labeled with the same tag. If the PG ap-
proach does find more likely modes, does that correspond to gains in practical measures
like accuracy? Finally, how does the number of particles in PG samplers influence the
inference? We hypothesize that increasing the number of particles decreases the vari-
ance of the posterior likelihoods as the chance of generating a population dominated by
likely modes increases. However, the marginal improvement from additional particles
should exhibit diminishing returns.

Section 4.1 describes the corpora on which these hypotheses are tested. We evaluate
the performance of the samplers with two approaches. The first approach is an analysis
of the samplers as inference algorithms. Each approach should tend toward a mode in
the distribution as it mixes, resulting in more likely restaurant configurations. Section
4.2 analyzes the particle filter based samplers with various numbers of particles in an
effort to understand how they behave. Then, section 4.3 evaluates each of the proposed
approaches on PoS inference tasks from several languages. These results allow a prac-
tical comparison with other PoS inference approaches.

4.1 Data

Section 4.2 tests and compares several different approaches with a number of param-
eters. To simplify the procedures, all of the tests in the analysis are performed on a
reduced version of the Penn Wallstreet Journal (WSJ) treebank, similar to Gao and
Johnson [17] and Goldwater and Griffiths [18]. This reduced corpus is composed of the
first 10,000 sentences in the Penn WSJ treebank, with 240,236 tokens. Additionally, this
corpus uses the same, 17 tag, reduced tagset as Goldwater and Griffiths [18], developed
by Smith and Eisner [19].

Section 4.3 compares the many-to-one (M-1) accuracy of the induced tag assign-
ments on the full Penn WSJ treebank corpus, as well as the corpora from the CoNLL-X
shared language task [20]. M-1 accuracy assigns the induced syntactic categories to the
PoS of the most tokens of that category.

4.2 SMC Analysis

Before comparing the performance of the PG samplers to other inference methods, we
wish to learn more about the approaches themselves. It is not obvious how well the ben-
efits of block sampling transfer to SMC based approaches. Both the sent and type
samplers are novel approaches to computational linguistics, and many of their proper-
ties are unclear. For example, the samples generated from the particle filter should have
a higher variance than the target distribution. If the variance is too high, the sampler
will be slower to converge. While additional particles lower the relative variance, they
also increase the run time linearly. We hypothesize that there is a threshold of particles
necessary to ensure that some are high likelihood sequences, beyond which inference
gains are minimal the additional computational expense is wasted.

Like other MCMC methods, particle Gibbs generates a sequence of samples from
the posterior distribution of the model in question. The PG sampler should mix more
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quickly than a local sampler because it takes larger steps. These larger steps should
move the PG sampler to a more likely mode in fewer iterations. The results in this
section measure the power of the inference as the rate at which the posterior likelihood
of the restaurant configuration increases.

The sentence based sampler, sent, samples from a distribution that can be exactly
computed, facilitating comparisons between the exact sampler and the SMC approach.
Figure 1 compares the posterior log-likelihoods of the sent sampler and the exact
sentence sampler over 200 iterations. As expected, the likelihoods of the particle filters
approach that of the exact sentence sampler as the number of particles increases from
10 to 100.
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Fig. 1. Posterior Log-Likelihood of PYP-HMM inference over iterations (a) and time (b) with
exact as well as PG sent sampler with various numbers of particles. Except for the local sampler,
which ran for 300 iterations in the time graph, the samplers were run for 200 iterations each, the
end of a line represents the time to finish those 200 iterations.

Figure 2 compares the table configuration log-likelihood of the 1HMM approxima-
tion implemented by Blunsom and Cohn [4] with the type particle filter based sampler
as well as the local sampler and the exact block sentence sampler. Unlike the sentence
based block sampler, type sampler cannot be exactly calculated, even with the 1HMM
approach of constraining inference to only consider sequences that assign the same tag
to every token of the same word type. The 1HMM sampler approximates these proba-
bilities using expected table counts. Theoretically, the type sampler should be a better
approximation, being gauranteed to approach the true distribution as the number of par-
ticles increases. The results suggest that the type sampler can perform better than the
1HMM sampler with few particles. Unlike the sent sampler, the type sampler per-
forms well even with fewer particles than the number of PoS categories in the tagset.
These results suggest that the choice of block has a strong influence on the resulting
sampler.
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Interestingly, the local sampler reaches a higher mode than the 1HMM approach
before the fiftieth iteration. However, earlier work by Blunsom and Cohn [4] found that
the 1HMM approximation achieved a consistently higher M-1 accuracy than the local
sampler. Section 4.3 confirms the same result. This reveals a disconnect between the
likelihood under the PYP-HMM model and the M-1 accuracy. Additionally, both the
type and 1HMM samplers reach likely modes within 30 iterations, after which they
plateau and the additional cost of these approaches is wasted.

0 50 100 150 200

Iterations

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Type Samplers over Iterations

Local

Type: P = 10

Type: P = 25

Type: P = 50

Type: P = 100

1HMM Approx.

(a) Iterations

0 5 10 15 20

Time (hr.)

2.7

2.6

2.5

2.4

2.3

2.2

2.1

L
o
g
 L

ik
e
li
h
o
o
d

1e6 Type Samplers over Time

Type: P = 10

Type: P = 25

Type: P = 50

Type: P = 100

1HMM Approx.

(b) Time (hr.)

Fig. 2. Posterior Log-Likelihood of PYP-HMM inference over iterations (a) and time (b) with the
type sampler as well as the 1HMM approximation proposed by Blunsom and Cohn [4] with
various numbers of particles. Except for the local sampler, which ran for 300 iterations in the
time graph, the samplers were run for 200 iterations each, the end of a line represents the time to
finish those 200 iterations.

An interesting variant of the basic PYP-HMM model replaces the uniform base of the
emission distribution with a bigram character language model (PYP-HMM-LM) [4]. In
addition to allowing the PYP-HMM to recognize basic word morphology, the character
language model creates a strong bias toward only one tag per word type. Figure 3(a)
shows that the PYP-HMM-LM model is too tightly coupled for either the local or the
sent samplers to mix quickly as they did with the simpler PYP-HMM model. The
PYP-HMM-LM model reveals a weakness of the simple local Gibbs sampler approach,
because the probability of a word being emitted by a new state is so low that sampler is
highly likely to choose the same PoS tag assignment as other occurences of that word.
The additional context of the sent sampler results in bigger steps and faster mixing
than the local sampler, but most of the variables influencing probability of and particular
tag assignment are in different sentences.

On the other hand, the type and 1HMM samplers sample all of the tags assignments
for words of the same type simultaneously. Figure 3(b) shows that the result is drasti-
cally faster mixing. The type sampler is just as strongly influenced to assign all words
of the same type to the same PoS category, but there are no same-word-type assignments
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to bias the choice of which one tag they will all get. This strong correlation between
the tags assigned to words of the same type may explain the type sampler’s strong
performance with so many fewer particles than necessary for the sent sampler: once
a tag has been assigned to a sufficient number of words of the same type, that same
tag will be progressively more likely to be chosen again. Perhaps a one-tag-per-type
particle filter can take advantage of this fact to simplify the proposal distribution.
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Fig. 3. Posterior Log-Likelihood of PYP-HMM-LM inference with the sent sampler (a), and
the type sampler as well as the 1HMM approximation proposed by Blunsom and Cohn [4] (b)
with various numbers of particles

The fact that the type sampler requires so few particles for inference relative to
the sent sampler suggests that the choice of block can heavily influence the perfor-
mence of a block Particle Gibbs sampler. The optimal block for a given model is not
obvious and may be difficult to determine empirically. On the other hand, the large and
expensive steps taken by a Particle Gibbs sampler are likely only necessary when faster
methods reach modes from which they are slow to escape. A mixed sampler that only
occasionally takes large steps with Particle Gibbs might achieve similar results with
less computational cost. Such an approach need not even rely on any specific block par-
titioning, particle filters do not place many restrictions on the distributions from which
they generate samples.

There are a multitude of possible combinations of mixed samplers, figure 4 demon-
strates the performance of a few instantiations of one simple approach. Each of the
mixed samplers in figure 4 randomly choses on of either the local, sent, or type
samplers (the numbers in the legend describe the ratio of each sampler in the mixture.)
For the sake of simplicity, each mixed sampler uses the same number of particles for the
sent and type samplers, the mixed samplers in figure 4 all use ten particles. While
there is a high degree of variance, the mixed samplers all show the rapid migration
toward the mode shown by the type sampler, but each iteration takes less time on
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average because of the sent and local samplers. The results in figure 4(b) suggest
that the computational costs of the Particle Gibbs samplers can be mitigated by mixed
sampling without eliminating the benefits from particle filtering. Finally, the samplers
with the sent sampler in the mix performed quite well with ten particles despite the
its poor performance with the same number of particles on its own. Perhaps mixing the
block samplers diminishes the particle cost of poor block choice.
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Fig. 4. Posterior Log-Likelihood of PYP-HMM inference with various mixed samplers over 200
iterations ((a)) and over time ((b)). The colon separated lists provide the ratio of each mixed
sampler: the sampler run on any given iteration is proportional to the number next to it. In each
sampler, the particle filters are run using 10 particles. The samplers were run for 200 iterations
each, the end of a line represents the time to finish those 200 iterations.

4.3 Unsupervised Part-of-Speech Tagging

Table 1 compares the M-1 accuracy of the sent and type particle filter samplers,
from sections 3.1 and 3.2, with 100 particles each. Each site in a corpus is assigned
the most commonly visited tag assignment at that site over all iterations. The particle
filter based samplers rarely score a higher accuracy than even the local sampler, which
completes 500 iterations before the particle filters complete 200.

While figures 1(a) and 2(a) show that all of the samplers surpass the 1HMM sampler
in likelihood, the accuracies of the 1HMM and 1HMM-LM approximations remain
well above the other approaches. This suggests that there are high-likelihood assign-
ments that produce lower accuracy results, presumably related to the fact that the type
sampler is not restricted to assignments with exactly one tag for each word type. If
the model assigns equal likelihood to these assignments, inference will not be able to
distinguish between them.

Excepting Arabic, the Type-10-LM sampler outperforms all of the other non-
restrictive approaches, suggesting that the PYP-HMM-LM model may be a more accu-
rate representation of PoS. As noted in section 4.2, the PYP-HMM-LM model is biased
toward fewer tags per type than the more standard HMM model, resulting in an average
number of tags per word type that is closer to the true value. Even so, figure 3(b) shows
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Table 1. Many-to-1 accuracies on CoNLL and Penn-Treebank Wall Street Journal corpora for
sentence- (Sent) and type- (Type) based filtering. The table lists the average M-1 accuracy mea-
sured according to the maximum marginal tag assignments over 3 seperate runs after 200 itera-
tions for the sent, type, 1HMM and 1HMM-LM samplers, and 500 iterations for the HMM
local sampler.

Language Sent-100 Type-100 Type-10-LM Local 1HMM 1HMM-LM Tokens Tag types
WSJ 69.8% 70.1% 74.7% 70.2% 75.6% 77.5% 1,173,766 45
Arabic 53.5% 57.6% 51.3% 56.2% 61.9% 62.0% 54,379 20
Bulgarian 64.8% 67.8% 71.6% 67.6% 71.4% 76.2% 190,217 54
Czech 59.8% 61.6% 65.2% 64.5% 65.4% 67.9% 1,249,408 12c

Danish 65.0% 70.3% 74.9% 69.1% 70.6% 74.6% 94,386 25
Dutch 61.6% 71.6% 70.1% 64.1% 73.2% 72.9% 195,069 13c

Hungarian 61.8% 61.8% 68.5% 64.8% 69.6% 73.2% 131,799 43
Portuguese 59.4% 71.1% 74.4% 68.1% 72.0% 77.1% 206,678 22
Spanish 66.3% 69.1% 75.3% 68.5% 74.7% 78.8% 89,334 47
Swedish 62.9% 63.5% 68.3% 67.6% 67.2% 68.6% 191,467 41

that the type sampler mixes at least as well as the 1HMM sampler with the character
language model, yet the 1HMM sampler still scored a higher many-to-one accuracy on
all languages other than Danish. This discrepancy between model likelihood and accu-
racy suggests that a different model is necessary to further improve unsupervised PoS
induction.

5 Conclusion

This paper presented a novel application of the Particle Gibbs sampler approach to the
computational linguistic inference application of unsupervised PoS induction. Such ap-
proaches show great potential for inference, especially in highly dependent distributions
e.g. non-parametric Bayesian applications. While this power generally comes and the
expense of significantly increased computation, results show that a mixed sampler that
only occasionally performs a Particle Gibbs sampling step can achieve similar results
in a fraction of the time. Additionally, the type particle filter itself can be largely run
in parallel, only bottlenecking when the particle weights need to be normalized. Fur-
ther expansion of the basic ideas presented will enable scalable inference in otherwise
intractable models.
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