
Learning Compact Class Codes for Fast

Inference in Large Multi Class Classification

M. Cissé, T. Artières, and Patrick Gallinari

Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie,
Paris, France

firstname.lastname@lip6.fr,

http://www-connex.lip6.fr

Abstract. We describe a new approach for classification with a very
large number of classes where we assume some class similarity informa-
tion is available, e.g. through a hierarchical organization. The proposed
method learns a compact binary code using such an existing similarity
information defined on classes. Binary classifiers are then trained using
this code and decoding is performed using a simple nearest neighbor
rule. This strategy, related to Error Correcting Output Codes methods,
is shown to perform similarly or better than the standard and efficient
one-vs-all approach, with much lower inference complexity.

1 Introduction

Classification problems with very large number of classes (VLC) now occur in
many applications in the web, text, image or video domains. Current problems
often deal with tens or hundreds of thousand of classes. For example, for patent
classification the number of classes is around 60 000, for image annotation classes
are keywords and their number is not limited, the number of classes in large class
hierarchies like Dmoz is around 600 000 and still growing.

Scaling algorithms for VLC is a recent research direction compared to scaling
wrt the sample size or data dimensionality and this is still a challenging problem
[1], [2] [3], [4], [5]. Its specificity lies in the complexity of inference. The inference
linear complexity in the number of classes of standard one vs rest approaches
is prohibitive for VLC and only sub-linear inference methods are acceptable for
practical purpose. Of course, training should also remain feasible. Besides pure
scaling problems, classes in VLC problems may evolve, e.g. some classes may
become rarely observed. Designing classifiers that do not require full retraining
for new classes is also important in many cases.

We focus here on the design of algorithms for dealing with these different
issues. In our approach the classification problem is casted into a cost-sensitive
framework where a class distance or class similarity information is supposed
available. Cost sensitivity reflects an existing latent structure between the classes
and these relations will be exploited as complementary knowledge to improve
classification performance and to reduce the inference and training complexities.

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 506–520, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Compact Class Codes for Fast Inference 507

This information could be provided by existing resources which in our case
is a class-taxonomy, but the extension to other class similarity measures is
straightforward.

Within this framework, the approach we develop relies on first learning binary
class codes using the similarity information between classes, a class will then be
represented as a l-dimensional binary code with values in {−1,+1}, and second
in training l binary classifiers, each will predict one bit of the class code. The
dichotomizer for the jth bit of the code will be trained to distinguish between
the samples of all classes whose jth bit is 1 and those whose jth bit is -1. A test
example will then be categorized according to a simple nearest neighbor rule
between the code computed for this example and learned codes. This method is
inspired by Error Correcting Output Codes (ECOC) [6] and Class embeddings
[7]. With this strategy, the complexity of inference will become linear in the
length of the code instead of the number of classes for computing the output
code of an input sample and logarithmic in the number of classes to compute
the closest class code. Consequently we aim at designing compact class codes.
Besides fast decoding, these codes should be discriminant enough to reach a
performance equivalent to or higher than standard classification methods, at a
reduced inference complexity.

Our main contribution is an efficient procedure for learning compact binary
class codes of length l such that l << k where k stands for the number of
classes. The inference requires then computing the output of l classifiers while
for the one vs rest (OVR) approach inference requires computing the output of
k classifiers. The value of l may be set so as to achieve a compromise between
complexity and acuracy. We show experimentally that the value of l required
for reaching OVR performance, scales sub-linearly with the number of classes k
and that increasing the complexity of the method (i.e. l) allows outperforming
OVR. We provide an experimental comparison, with respect to performance and
runtimes, of our method with baselines, including OVR, on datasets up to 10 000
classes built from the 2010 Large Scale Hierarchical Text Classification challenge
datasets [8].

Finally, beyond its raw performance, we investigate the particular ability of
our method for zero-shot learning, i.e. recognizing samples from new classes
without any training sample. We show that providing the similarity information
for new classes allows recognizing samples from theses classes even in the case
when no training samples are available.

The paper is structured as follows. Section 2 reviews related works, section
3 presents our approach for learning compact class codes, and finally section 4
reports experimental results.

2 Related Works

Classification in a large number of classes has received an increasing attention
in the last few years. The challenge of designing sub-linear inference complex-
ity algorithms has guided the researchers into two main directions: hierarchical
approaches and class nearest neighbor search methods.

508 M. Cissé, T. Artières, and P. Gallinari

Hierarchical Approaches exploiting a tree structured relation among classes
are straightforward solutions for reducing the inference complexity from O(k) to
O(log k). Besides, many problems can be formulated as hierarchical classifica-
tion, and most of the datasets available to the research community are organized
hierarchically. Different methods have been proposed and some start from an
existing hierarchy while others learn the class hierarchy. The filter tree and the
conditional probability tree [9] for example are consistent reduction of multi-
class problems to binary that learn a tree of classifiers. Trees offer a natural and
efficient solution to the inference complexity problem, on the other hand, it is
widely recognized (e.g. [3], [2]), that classifier cascades greatly suffer from the
propagation of errors from parent to children. This is why some authors [10], [3]
propose to globally train the classifiers in the tree, instead of using local clas-
sifiers, and report improved performance at the cost of larger training complexity.

The One-vs-Rest [11] approach is the most popular flat multi-class classi-
fier. Surprisingly, it remains one of the most efficient approaches in terms of
accuracy, for VLC [3]. Although the inference complexity is O(k), it is readily
parallellizable which might be another way for solving the complexity issue. The
one-vs-rest classifier is then a strong contender for large scale classification and
often the best classifier for VLC in terms of accuracy.

Taxonomy [7] and Label Embedding [3] are other flat approaches that
propose to jointly learn a projection of the data and the classes (or the taxon-
omy) in a low dimensional latent space where each data will be close to its class
representation. The inference procedure is based on a class nearest neighbor
search, so that its complexity is potentially O(log k). This, and the competi-
tive performance reported make these methods appealing for large multi-class
problems though their performance is often below that of OVR method (e.g. [3]).

Error Correcting Output Coding [6] has not been used up to now for VLC.
Since our method produces ECOCs, we introduce its principle here and will
compare our strategy with standard ECOC in the experimental section. ECOC
is a general framework for handling multi-class problems and consists in repre-
senting each class with a codeword. These codewords are arranged into a coding
matrix M(k× l) where l is the code length and k is the number of classes. ECOC
uses a binary coding M ∈ {−1, 1}k×l, each column of the coding matrix defines
a partition of the target space and learning consists in training l dichotomizers
to predict a codeword for each new instance. Prediction, also called decoding,
is done by assigning a new sample to the class having the closest codeword
according to a distance measure. The key issue here is designing a coding ma-
trix with good error correcting properties. It is usually required that both rows
and columns are well separated. Row separation ensures that a large number of
binary classifiers have to make a wrong decision before the decoding process mis-
classifies a test sample. Column separation ensures that the binary dichotomizers
(there is one dichotomizer per column) are uncorrelated. The most popular way
for initialiazing M is to choose each mij to be 1 or −1 with probability 1/2
[12], it is called dense random ECOC. For small number of classes, ECOC might

Learning Compact Class Codes for Fast Inference 509

outperform the standard one-vs-rest scheme [6] [12] and the inference complexity
is O(log k).

3 Our Approach: Learned Distributed Representation
(LDR)

3.1 Principle

As demonstrated in recent publications one of the best performing method for
VLC today is the OVR method [3]. Yet this strategy has inference complexity
that scales linearly with the number of classes. Alternatively hierarchical meth-
ods allow fast inference but fail to reach the accuracy of OVR, due to error
propagation in the tree. We aim here at building a method that allows, both
fast inference and high accuracy. To reach this goal we propose a method called
Learned Distributed Representation (LDR) that first learns binary low dimen-
sional class codes, then uses binary classifiers to learn each bit of the codes, as
in ECOC.

A key issue is to take into account the available relationships between classes
(e.g. a hierarchical or a graph organization of classes). We propose to compute
low dimensional binary class codes that reflect these relationships. In order to
do that we first represent a class as a vector of similarities between the class
and all other classes, si = [s(Ci, C1), ..., s(Ci, Ck)] (see section 4 for an example).
Different similarity measures may be used. It may be computed from a hierarchy
of classes or from a similarity between samples of the two classes. Then, we learn
short class codes that reflect these relationships between classes, by transforming
these high k-dimensional representations of classes (si) into lower l-dimensional
codes (hi) via a dimension reduction algorithm. This step is explained in details
in section 3.2. Once low dimensional (say l-dimensional, with l << k) binary
class representations are learned, we train l binary classifiers, one for every bit.
The binary classifier for the jth bit is a dichotomizer that is learned to separate
samples of all classes whose class code has the jth bit set to 1 from the samples
of all classes whose class code has the jth bit set to -1. All these binary classifiers
are then learned with all training samples from all classes.

Finally at test time, when one wants to decide the class of an input sample x,
we use the l classifiers on x to compute a l-length binary word m = (m1, ...,ml)
which is compared to the k class codes {hi, i = 1..k} to find the nearest neighbor.

3.2 Learning Compact Binary Class-Codes

We propose to learn compact class codes with autoencoders which have been
widely used for feature extraction and dimensionality reduction [13], [14]. Among
many existing dimension reduction methods the advantage of autoencoders lies
in the flexibility of the optimization criterion that allows us including additional
terms related to class codes separation. An autoencoder is trained by minimizing
a squared reconstruction error between the input (here a class representation si)

510 M. Cissé, T. Artières, and P. Gallinari

and its reconstruction at the output of the autoencoder, ŝi. It may be viewed
as an encoder (input → hidden layer) followed by a decoder (hidden → output
layer). Usually it is required that encoding and decoding weights are tied [14],
both for linear and non linear encoders, so that if W is the coding matrix, WT is
the decoding matrix. We used this strategy here. Training an autoencoder writes
(omitting bias terms):

argmin
W

k
∑

i=1

||si −WT × f(W × si)||2 (1)

where ||.|| is the euclidean distance. The activation function in hidden units f
may be a linear function, then the projection learned by the autoencoder is sim-
ilar to the one learned by a principal component analysis. One can expect to
learn more interesting features by using nonlinearities on hidden units, using
sigmoid or hyperbolic tangent activation functions (in our implementation, we
use hyperbolic tangent activation function hidden units). To perform dimension-
ality reduction one uses a narrow hidden layer which forces to learn non trivial
regularities from the inputs, hence interesting and compact codes on the hidden
layer. The vector of activation of hidden units is the learned encoding function.
Here the new class code for class Ci is then hi = f(W × si).

Ideally, new class codes should satisfy two properties. First, similar classes
(according to the cost-sensitive information and/or to similar examples) should
have close codes hi. Second, class codes for any pair of classes should be signif-
icantly different to ensure accurate classification at the end. The first property
is naturally satisfied since an autoencoder actually learns hidden codes that
preserve distances in the original space. Next, to ensure minimal separation be-
tween class codes we propose to look for a solution of the following constrained
problem:

argmin
W

k
∑

i=1

||si −WT × f(W × si)||2 (2)

s.t. ∀(i, j), i �= j : ||f(W × si)− f(W × sj)|| ≥ b

The constraints are inspired from margin based learning and yield to maximize
the distance between any pair of class codes up to a given threshold b. We solve
this optimization problem by stochastic gradient descent using the unconstrained
regularized form:

argmin
W

α

k
∑

i=1

||si −WT × f(W × si)||2

+ β

k
∑

i,j=1

max(0, b− ||f(W × si)− f(W × sj)||)

+
λ

2
||W||2 (3)

Learning Compact Class Codes for Fast Inference 511

Fig. 1. Learning the autoencoder from pairs of input samples (here α and β are
considered equal to 1). See Algorithm 1 for details.

where α and β weight the respective importance of the reconstruction error term
and of the margin terms, and ||W||2 is a regularization term. Note that α, β, and
b (which tunes the margin between two class codes) are set by cross validation.

We learn the autoencoder using stochastic gradient descent by iteratively pick-
ing two training samples i and j at random and making a gradient step. Figure 1
illustrates the training process which recalls somehow Siamese architectures used
in the past for vision tasks [15]. At the end, in order to get binary class codes,
we threshold the learned real valued class codes. This means that the jth com-
ponent of all class codes hi are set to hi(j) = −1 if hi(j) < θj , and hi(j) = +1
otherwise. The threshold value θj is chosen so that the prior probability of the
jth bit of a class code be +1 is equal to 0.5, and this is done by setting θj to the
median of {hi(j)|i = 1...k}. Although this cut-off it is not learned to optimize
classification accuracy, it should be noted that it is defined according to the usual
property in ECOC (firing with probability 0.5). Also since similar classes should
have close class codes, it is expected that the obtained two class classification
problem (i.e. for the jth bit of class codes, separating samples of all classes with
hi(j) = +1 from the samples of all classes with hi(j) = −1) should be easier to
solve than any random two class problem as those defined in traditional ECOC.
We will come back to this point in the next section. Algorithm 1 describes the
whole algorithm.

3.3 Relations to ECOC

Because each element in the class codes has probability 1/2 of being either +1 or
−1, our method bares some similarities with the standard dense random ECOC.
However, there are two fundamental differences.

512 M. Cissé, T. Artières, and P. Gallinari

The first difference is that by construction, our learned distributed represen-
tation is intended to have a reduced tree induced loss compared to randomly
generated methods because the autoencoder projects classes that are close in
the hierarchy in the same area of the latent space. The second difference, which
is somehow related to the first one, is that the binary classification problems
induced by the learned class codes should be easier than in random ECOC.
Indeed, since similar classes should have close class codes, it is likely that for
similar classes most bits are equal. This means that a particular dichotomizer is
trained with samples for class +1 and for class -1 that are more homogeneous
than if the partitioning of classes was random, as in traditional ECOCs. At the
end, if dichotomizers reach higher accuracy, the overall accuracy of the multiclass
classifier should also be higher.

Algorithm 1. Learning Compact Binary Class Codes

1: Input:
{
si ∈ R

k|i = 1, ...k
}
, l, ε

2: Output:
{
hi ∈ R

l|i = 1, ...k
}

3: Learn the weights W of an autoencoder (with k input neurons, l hidden neurons,
and k output neurons) on

{
si ∈ R

k|i = 1, ...k
}
to minimize cost in Eq. (3)

4: repeat
5: Pick randomly two samples (si, sj)
6: Make a gradient step : W = W − ε∂LW(si, sj)/∂W

with: LW(si, sj) =
1
2

∑
k∈{i,j} α||sk−WT ×f(W×sk)||2+λ||W||2+βmax(0, b−

||f(W × si)− f(W × sj)||)
7: until convergence criterion is met
8: Compute the learned class codes ∀i ∈ [1, k] ,hi = f(W × si)
9: for all j = 1...l do
10: Compute the median θj of the jth component of hi’s, {hi(j)|i = 1, ..., k}
11: Threshold the jth component of hi’s at θj so that ∀i ∈ [1, k] ,hi(j) ={

1 if hi(j) ≤ θ
−1 otherwise

12: end for
13: return Compact binary class codes

{
hi ∈ R

l|i = 1, ...k
}

An ECOC coding scheme closer to our method is the discriminative ECOC
(DECOC) which learns a discriminative coding matrix by hierarchically parti-
tioning the classes according to a discriminative criteria [16]. The hierarchy is
built so as to maximize the mutual information between the data in each parti-
tion and the corresponding labels. Our method differs from this in that we are
seeking codewords having a sub-linear dependency on the number of classes k
while the DECOC method creates codewords of length k − 1.

3.4 Training and Inference Complexity

We focus here on complexity issues with respect to the number of classes k, the
number of training samples N , the dimension of samples d, and the length of

Learning Compact Class Codes for Fast Inference 513

the learned class codes l. Let us denote by CT (N) the complexity of training one
binary classifier with N training samples, and by CI the complexity of inference
for a binary classifier. All complexities in the following will be expressed as a
function of CT and CI .

We start with our method. Training consists in learning the class codes of
length l, then in learning l classifiers. Learning class codes is done by gradi-
ent descent whose complexity depends on the number of iterations. Yet since
class codes are binarized at the end, one can expect that the method will not
be very sensitive to accurate convergence of the autoencoder and one can rea-
sonably assume a fixed and limited number of iterations I so that learning the
autoencoder requires O(I × k2 × l) (I iterations with k samples every iteration
whose forward and backward pass costs roughly O(k × l)). Next, learning the
l binary classifiers requires O(l × CT (N)). At the end training complexity is in
O(I × k2 × l + l × CT (N)). Inference consists in finding the class code which
is most similar (wrt. Hamming distance) to the output code computed for this
input sample. Computing the output code requires using the l classifiers, hence
O(l×CI). Next, using fast nearest neighbor search methods such as ball trees or
kd-trees for finding the closest class code may be done (in practice) in O(log k)
comparisons [17], where each comparison costs O(l). Overall, the inference com-
plexity is then O(l × (log k + CI)).

We compare these costs to those of the OVR method which is the most ac-
curate technique for large scale classification [3] (see Table 1). Training in OVR
method requires O(k × CT (N)) since one uses k classifiers that are all trained
with all training samples, while inference requires O(k × CI).

It clearly appears from this discussion that OVR does not extend easily to
VLC due to its inference complexity that scales linearly with the number of
classes. Compared to these baselines, our method exhibits interesting features. As
we will argue from experimental results, it may outperform OVR for l << k and
the minimal length l for such a behavior seems to scale strongly sublinearly with
k. Furthermore although the training complexity includes a term in O(k2), it
must be clear that in experimental settings such as the ones we investigate in this
paper (large number of samples and high dimensionality), the overall training
complexity in O

(

lIk2 + lCT (N)
)

is dominated by the second term O(lCT (N)).

Table 1. Comparison of training and inference complexity for our method and for
standard methods, OVR and ECOC, as a function of the number of classes k, the
dimension of the data d, the size of the class codes l, the learning complexity of a
binary classifier with N training samples CT (N), the inference complexity of a binary
classifier CI , and the number of training iterations I of the autoencoder (LDR method).

Training Inference

OVR O(kCT (N)) O(kCI)
ECOC(l) O(lCT (N)) O (lCI + l log k))
LDR(l) O

(
lIk2 + lCT (N)

)
O (lCI + l log k)

514 M. Cissé, T. Artières, and P. Gallinari

4 Experiments

We performed experiments on three large scale multi-class single label datasets.
The proposed method (LDR) is compared to two coding methods, spectral em-
bedding (SPE) and traditional error correcting output coding (ECOC), and to
a standard OVR baseline. We first present the datasets, then we explain our
experimental setup and finally we present results and analysis.

4.1 Datasets

We used datasets with respectively 1000, 5000 and 10000 classes. Each dataset
was created by randomly selecting the corresponding classes from a large scale
dataset released for the first PASCAL large scale hierarchical text classifica-
tion challenge (Kosmopoulos et al., 2010). This dataset was extracted from
the open Mozilla directory DMOZ (www.dmoz.org). The classes are organized
in a tree hierarchy, classes being at the leaves of the hierarchy and internal
nodes being not instantiated classes. Hierarchies are of depth 5 (Kosmopoulos
et al., 2010).

The documents were provided as word counts, and then transformed into
normalized TF/IDF feature vectors. Considering that for large multi-class text
classification every new class is likely to bring specific new words, we did not
performed any feature selection although all datasets have very high dimensional
feature spaces.

Statistics of the datasets are detailed in Table 2. Each dataset is split into
training, validation and testing sets (see Table 2).

We exploited a similarity measure between classes i and j, which is defined
as a function of the distance di,j between the two classes in the hierarchy mea-
sured by the length of the shortest path in the tree between the two classes:
si(j) = s(Ci, Cj) = exp(−d2i,j/2σ

2). The tree path distance between two classes
is also used in the tree loss used as a classification measure in section 4.3. We
systematically used σ = 1 in our experiments.

Table 2. Statistics of the dataset used in the experiments

Statistics 103 classes 5 ∗ 103 classes 104 classes

Nb. training docs 8119 36926 76417

Nb. validation docs 3005 13855 28443

Nb. testing docs 3006 13771 28387

Nb. features 347 255 - -

4.2 Experimental Setup

Three classifiers were used as baselines: OVR, random ECOC and a Spectral
Embedding technique.

Learning Compact Class Codes for Fast Inference 515

Besides ECOC classifiers, we also compared our method to a spectral embed-
ding technique (SPE) which can be used for learning class codes from a similarity
matrix and is an alternative to our auto-associator method. Spectral embedding
is widely used as a preprocessing step before applying k-means in clustering ap-
plications. It has also been used recently for hashing and we exploit a similar
idea here. In [18] the authors propose to embed the data for fast retrieval by
binarizing the components of the eigenvectors of the similarity matrix Lapla-
cian. This process aims at mapping similar examples in the same regions of a
target space. The training complexity of the method is O(k3 + lCT (N)), which
is much larger than LDR or ECOC, and is due to the high complexity if the
eigen-decomposition. This method is similar in spirit to LDR and ECOC and is
a natural candidate for comparison. The classes here play the same role as data
do in spectral hashing.

We chose logistic regression as a base classifier (dichotomizers) for all methods,
but any other binary classifier could be used as well. The binary classifiers were
trained with a regularization parameter selected from λ ∈ {0.001, 0.0005, ...,
10−6} using the validation set.

To train random ECOC classifiers, for a given code length l and a number of
class k, we generated several k× l matrices and discarded those having equal or
complementary rows. We then used the coding matrices with best error correct-
ing property (the top 25 matrices for 103 classes and the top 10 for 5 ∗ 103 and
104 classes) to train an ECOC classifier. Then we kept the model that reached
the best performance on the validation set for evaluation on the test set.

We compare the methods using accuracy and tree induced loss which is defined
as the average of the length of the shortest path in the hierarchy between the
correct class and the predicted class. The tree induced loss measures the ability
of the classifier to take into account the hierarchical nature of the classification
problem, and the class proximity according to this metric. A low tree loss means
that confusions are made between neighboring classes, while a high tree loss
signifies that confusions occur among distant classes.

4.3 Comparison of the Methods

We investigate here the behavior of the different methods on the three datasets
and explore how the performance evolves with respect to the class code length.
Comparisons with all methods are performed on the 103 and 5 ∗ 103 classes
corpora, while on the larger 104 classes dataset, only OVR vs LDR were tested.
Figure 2 reports accuracies on the first two datasets for code length in {200, 300,
400, 500, 600}. First it can be seen that LDR outperforms systematically the two
other coding methods (SPE and ECOC) whatever the dataset, and whatever the
class code length. Second, the performance of the three coding methods (LDR,
SPE and ECOC) increases, with some fluctuation, with the code length. A higher
code is needed when the number of classes increases. This behavior is intuitive.
Finally one can see that LDR reaches and even exceeds the performance of OVR
on these two datasets, while ECOC and SPE stay under the performance of
OVR, even when increasing the code length l.

516 M. Cissé, T. Artières, and P. Gallinari

Table 3 compares the different methods using their best accuracy score1, and
the corresponding tree induced loss on the same two datasets. It can be seen
that the best performance of the different methods are quite close, LDR being
systematically higher and providing a clear speedup wrt OVR. For example, for
1 000 classes, with a code length of 200 LDR achieves an accuracy of 67.49%
while OVR’s accuracy is 66.50%. In this case, the number of classifiers used by
the OVR method is 5 times that of LDR.

We come back to our previous observation that LDR is consistently better
than random error correcting output coding (ECOC) (Figure 2), which holds
whatever the code length. Our main explanation of this phenomenon is that the
binary problems are probably easier to solve with LDR. It has been observed
since the early use of ECOCs [6] that the dichotomies induced by the codes
where more difficult to solve than the initial OVR dichotomies. Here, neighbor
classes in the tree, are forced to have similar codes. The data for these classes
are often closer one to the other than that of distant classes, so that similar
inputs will most often be required to be classified similarly. On the opposite,
classical ECOCs where codes are designed at random do not share this property.
To investigate this, we compared the mean accuracy of the binary classifiers
induced by our method to the mean accuracy of classifiers in a random ECOC
scheme. The mean accuracy remains between 72% and 75% for LDR while it is
constant at about 69% for ECOC which confirms the hypothesis that learned
dichotomizers induce easier problems. Also we think that the learning criteria
of the autoencoder helps creating better class codes than those produced by the
spectral embedding method.

At last we compare LDR and OVR on classification tasks with up to 10 000
classes. Figure 3 shows the performance of LDR vs OVR for the three datasets
(103, 5 ∗ 103 and 104 classes) for a code length of size 500. LDR outperforms
OVR whatever the number of classes. Speedup are more and more important
as the number of classes increases. For 104 classes LDR achieves an accuracy of
36.81% (with a code length of 500) while the OVR’s performance is 35.20%. This
performance is achieved while using 20 times less classifiers than the number of
classes. This corresponds to a speedup of 46 wrt OVR (measured by runtimes).
Such a speedup is not only due to the smaller number of classifiers used by LDR,
but also to fast bitcounts routines that exploit the binary representation of codes
for nearest neighbour search.

4.4 Zero-Shot Learning

A few approaches have been proposed in the literature to answer the zero-
shot learning problem [19], [20], i.e. designing a classifier that is able to dis-
criminate between classes for which we do not have instances in the training
set. One particular approach proposes the use of a rich semantic encoding of
the classes [20]. Our approach is close to this idea since the codes of classes

1 For each method, one uses the parameterization, including the value of l, leading to
the best score.

Learning Compact Class Codes for Fast Inference 517

Fig. 2. Accuracy of our method (LDR), random ECOC (ECOC), Spectral Embedding
(SPE), and OVR as a function of code length on datasets with 1 000 classes (top) and
with 5 000 classes

Table 3. Comparative results of OVR, Random ECOC, Spectral Embedding, and
LDR, on datasets with 1000 and 5000 classes with respect to accuracy, tree induced
loss, and inference runtime. The runtimes are given as speed-up factors compared to
OVR (×2 means twice as fast as OVR). Reported results are the best ones obtained on
the datasets whatever the class code length. For LDR, we also provide the performance
reached for a minimal l yielding performance at least equal to that of OVR, denoted
as LDR (first), to to stress the speed-up.

Classifiers 1000 classes 5000 classes
Accuracy T.I.L Speed Accuracy T.I.L Speed

One-vs-rest 66.50% 2.63 ×1 44.76% 3.98 ×1
Random ECOC 65.10% 2.74 ×2 44.41% 4.12 ×12
SPE 67.73% 2.51 ×2 43.75% 4.30 ×12
LDR (first) 67.49% 2.54 ×5 44.88% 3.98 ×17
LDR(best) 68.40% 2.46 ×2 45.44% 3.93 ×12

518 M. Cissé, T. Artières, and P. Gallinari

Fig. 3. Accuracy of our method (LDR) and OVR on datasets with 1 000, 5 000 and
10 000 classes. Whatever the dataset LDR exploits class codes of length l = 500.

Table 4. Average accuracy (and standard deviation) of LDR (l = 200) for zero-shot
learning tasks. Results are averaged over 10 runs with removal of different random sets
of classes.

classes removed 10 20 30 40 50

Accuracy (std) 25.64(12.20) 24.45(6.34) 16.76(4.24) 14.31(3.18) 12.76(2.48)

(computed by the autoencoder) are vectors that encode some semantic
information on classes.

To explore empirically how our model is able to achieve zero-shot learning,
we performed the following experiment on the 1000 classes dataset. We learned
the class codes on the 1000 class representations (similarity vectors) computed
from the hierarchy, si. Then we selected randomly a number of classes (10 to
50) and removed all training samples of these classes from the training set.
The dichotomizers were then trained with this reduced training set. At test
time, following the approach in [19], we use the learned classifier to discriminate
between the classes whose training samples were not present in the training set.
Results are given in Table 4 for a class code length equal to 200. One can see
that the accuracy achieved by LDR on classes that have not been learned is
significantly greater than a random guess although it is naturally lower than the
accuracy obtained on classes that were actually represented in the training set
as reported in previous section.

Note also that one could go one step further than the zero-shot paradigm and
try to recognize samples from a new class which was even not used for learning

Learning Compact Class Codes for Fast Inference 519

the class codes, provided one gets its similarity with all classes in the training
stage. This would fit with many large multi-class problems where the set of
classes is not closed (for instance new classes appear periodically in the DMOZ
repository). Preliminary results show a similar performance as above provided
the number of new classes remains small. This is a perspective of our work.

5 Conclusion

We have presented a new approach for dealing with hierarchical classification
in a large number of classes. It combines the accuracy of flat methods and the
fast inference of hierarchical methods. It relies on building distributed com-
pact binary class codes that preserve class similarities. The main features of the
method lies in its inference complexity that scales sub-linearly with the number
of classes while outperforming the standard OVR and Error Correcting Output
Codes techniques on problems up to 10 000 classes. Interestingly our approach
also allows, to some extent, considering the addition of new classes in the hier-
archy without providing training samples, an instance of the zero-shot learning
problem.

References

1. Weinberger, K., Chapelle, O.: Large margin taxonomy embedding for document
categorization. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Ad-
vances in Neural Information Processing Systems, vol. 21, pp. 1737–1744 (2009)

2. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large tax-
onomies. In: SIGIR, pp. 11–18 (2009)

3. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi class
tasks. In: Advances in Neural information Processing (2010)

4. Xiao, L., Zhou, D., Wu, M.: Hierarchical classification via orthogonal transfer. In:
Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), pp. 801–808. ACM, New York (2011)

5. Deng, J., Satheesh, S., Berg, A.C., Li, F.F.: Fast and balanced: Efficient label tree
learning for large scale object recognition. In: NIPS, pp. 567–575 (2011)

6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2, 263–286
(1995)

7. Weinberger, K., Chapelle, O.: Large taxonomy embedding with an application to
document categorization. In: Advances in Neural Information Processing (2008)

8. Kosmopoulos, A., Gaussier, E., Paliouras, G., Aseervatham, S.: The ecir 2010 large
scale hierarchical classification workshop. SIGIR Forum 44(1), 23–32 (2010)

9. Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G., Strehl, A.: Conditional prob-
ability tree estimation analysis and algorithms. In: Proceedings of the Twenty-Fifth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2009),
pp. 51–58. AUAI Press, Corvallis (2009)

10. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector
machines. In: Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management, pp. 78–87 (2004)

520 M. Cissé, T. Artières, and P. Gallinari

11. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn.
Res. 5, 101–141 (2004)

12. Allwein, E.L., Schapire, R.E., Singer, Y., Kaelbling, P.: Reducing multiclass to
binary: A unifying approach for margin classifiers. Journal of Machine Learning
Research 1, 113–141 (2000)

13. Gallinari, P., LeCun, Y., Thiria, S., Fogelma-soulie, F.: Mémoires associatives dis-
tribuées: une comparaison (distributed associative memories: a comparison). In:
Proceedings of COGNITIVA 1987, Paris, La Villette, Cesta-Afcet (May 1987)

14. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine learning, ICML 2008, pp. 1096–1103. ACM, New
York (2008)

15. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a siamese time delay neural network. In: NIPS, pp. 737–744 (1993)

16. Pujol, O., Escalera, S., Radeva, P.: An incremental node embedding technique for
error correcting output codes. Pattern Recogn. 41(2), 713–725 (2008)

17. Moore, A.: Efficient memory-based learning for robot control (October 1990)
18. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760

(2008)
19. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI,

pp. 646–651 (2008)
20. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning

with semantic output codes. In: NIPS, pp. 1410–1418 (2009)

	Learning Compact Class Codes for FastInference in Large Multi Class Classification
	Introduction
	Related Works
	Our Approach: Learned Distributed Representation (LDR)
	Principle
	Learning Compact Binary Class-Codes
	Relations to ECOC
	Training and Inference Complexity

	Experiments
	Datasets
	Experimental Setup
	Comparison of the Methods
	Zero-Shot Learning

	Conclusion
	References

