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Abstract. Most image segmentation algorithms are designed to esti-
mate a single segmentation for each image, where the gold standard
segmentation is often labeled by a human expert. However, it is common
that multiple manual segmentations are available for some images, e.g.
independently labeled by different experts. For efficient usages of manual
segmentations, we propose to simultaneously produce automatic estima-
tions for each expert. The key advantage of this proposal is that it al-
lows to incorporate the correlations between different experts to improve
the accuracy of automatic segmentation. In a brain image segmentation
problem, where for each image six manual segmentations are available,
we show that jointly estimating several manual segmentations produces
significant improvement over independently estimating each of them.

1 Introduction

Image segmentation is the primary mechanism for quantifying the properties of
anatomical structures and pathological formations using imaging data. Given the
often prohibitive cost of manual segmentation, accurate automatic segmentation
is highly desirable. To mimic manual segmentation, automatic segmentation is
often guided and evaluated against manual segmentations. However, segmenta-
tions labeled by different experts are often inconsistent.

Existing inconsistent manual segmentations not only reveals the significant
difficulty in performing manual segmentation, but also poses challenges on how to
develop automatic segmentation algorithms. Most automatic algorithms produce
a single solution for each image. When evaluated against inconsistent manual
segmentations, the automatic solution is either separately compared with each
of the manual segmentations or directly compared with the consensus manual
segmentation, e.g. derived by STAPLE [11]. Either way the automatic algorithm
is biased to produce solutions close to the consensus of all manual segmentations.

Employing consensus manual segmentation simplifies the evaluation process,
therefore makes the task of developing automatic methods more straightfor-
ward. However, it also sacrifices the rich information contained in the original
set of manual segmentations. Our contribution is to propose a novel scheme to
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incorporate multiple manual segmentations to guide automatic segmentation.
To maximize the usage of the valuable manual segmentations, we propose to si-
multaneously produce automatic estimations for all manual segmentations. The
key advantage of this proposal is that the label correlations between different
human experts can be incorporated to improve automatic segmentation.

We apply our method to segment the hippocampus in magnetic resonance
images (MRI) and show significant improvement over independently producing
estimations for each manual segmentation segmentation.

2 Jointly Estimating Multiple Manual Segmentations

Image segmentation can be addressed via estimating the conditional probability
p(SF |F ), where F is an image and SF is a segmentation for F . Assuming that
labeling different voxels is conditionally independent given the image patches
located on the voxels, we have p(SF |F ) =

∏
i p(SF (i)|F (N (i))), where i indexes

through image voxels. N (i) represents a neighborhood centered at i. F (N (i))
is the intensity patch located on the region. To estimate this probability, dis-
criminative learning techniques learn the label distribution p(l|F (N (i))) from
training data, e.g. [7], [8], which can be addressed by most classification algo-
rithms. l indexes through all possible labels. The segmentation is then obtained
via maximum a posterior inference, i.e. SF (i) = argmaxlp(l|F (N (i))).

Motivation for jointly estimating multiple manual segmentations. In the context
of clinical imaging studies involving segmentation, it is common to generate
repeat manual segmentations by multiple raters in order to establish inter-rater
and intra-rater reliability for a manual segmentation protocol. To handle the
inconsistency between multiple manual segmentations, one approach attempts
to infer the “ground truth” segmentation with the consideration of the reliability
of each rater [11]. However, the inferred “ground truth” loses the rich information
in the original manual segmentations and the errors in deriving the hard decision
of “ground truth” will affect the performance of automatic segmentation.

We advocate an alternative solution that produces a separate estimation for
each manual segmentation1. The key advantage of this strategy is that it allows
to incorporate the correlations between manual segmentations to improve the
accuracy of automatic segmentation. In our experiment, we observed that some
raters consistently produced larger volumes than others when segmenting the
hippocampus in MRI (see section 3.1). With such correlations, observing the
segmentation labeled by one rater provides meaningful information to estimate
the segmentation labeled by the other. Even if only one most reliable manual
segmentation is selected for one study, which is common is practice, as we show
below, incorporating manual segmentations labeled by less reliable raters helps
improving the automatic segmentation accuracy for the selected rater.

1 A unique manual segmentation is defined as consistently labeled by one human
expert in one segmentation trial.
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Formulation of jointly estimating multiple manual segmentations. Jointly esti-
mating multiple manual segmentations can be solved via estimating the following
joint conditional probability p(S1

F , ..., S
m
F |F ) ∝ p(F |S1

F , ..., S
m
F )p(S1

F , ..., S
m
F )
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⎡

⎣
m∏

j=1

p(F |Sj
F )

⎤

⎦ p(S1
F , ..., S

m
F ) ∝

⎡

⎣
m∏

j=1

p(Sj
F |F )

⎤

⎦ p(S1
F , ..., S

m
F ) (1)

where S1
F , ..., S

m
F estimate m manual segmentations, respectively. Given any

manual segmentation for an image, we assume conditional independence be-
tween the image and any other manual segmentations for the image. The last
equation is obtained by dropping the term p(F )/p(Sj

F ), where p(S
j
F ) is the prior

for observing a segmentation labeled by rater j. Since it is hard to approxi-
mate this prior, we treat it as a constant and focus on optimizing the remaining
terms. The first term in (1) can be estimated by separately applying discrimi-
native learning to estimate each manual segmentation. The second term is the
joint probability of observing all manual segmentations for one image, which
captures their correlations. Estimating this term is difficult as well, but a good
approximation can be obtained by applying pseudolikelihood [2]. We have:

p(S1
F , ..., S

m
F |F ) ∝

m∏

j=1

p(Sj
F |F )p(Sj

F |{S1
F , ..., S

m
F }\Sj

F ) (2)

In summary, each manual segmentation is estimated based on two constraints: 1)
image information, which directly captures the correlation between the manual
segmentation and an image; and 2) the segmentations estimated for the remain-
ing manual segmentations, which enforces the estimated segmentations to respect
the mutual correlations between different raters. As in (2), assuming assigning
labels to different voxels are conditionally independent given the patches located
on the voxels, we have the final approximation as p(S1

F , ..., S
m
F |F )

∝
m∏

j=1

∏

i

p(Sj
F (i)|F (N (i)))p(Sj

F (i)|{S1
F (N (i)), ..., Sm

F (N (i))}\Sj
F (N (i))) (3)

2.1 Discriminative Learning

Here, we describe in detail how we estimate the conditional probabilities in (3).

Learning to approximate one manual segmentation. For each manual segmenta-
tion, to estimate p(l|F (N (i))), i.e. the first term in (3), we train one segmentation
classifier using the modified AdaBoost algorithm [4],[9] for each label l to identify
voxels assigned to label l in the target manual segmentation.

For better performance, we apply the corrective learning technique [8]. This
method applies learning as an error correction tool to improving the segmenta-
tion produced by a host segmentation method. It was shown that it significantly
improved the performance of the learning algorithm and the host segmentation
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method [8]. In our experiments, we apply multi-atlas label fusion as the host
method (see detail in section 3). Note that multi-atlas segmentation can be ap-
plied alone to estimate each manual segmentation. Applying corrective learning
improves the performance. The region of interest and the features used in [8],
including spatial, appearance and contextual, joint spatial-appearance and joint
spatial-contextual features, are applied to train the classifiers, where the contex-
tual features are extracted from the initial segmentation produced by the host
method. To transfer the output of an AdaBoost classifier to a probability, we
apply the logistic transform, i.e. p(x) = ex

ex+e−x .

Learning the correlations between manual segmentations. To estimate the sec-
ond term in (3), we train correlation classifiers for each manual segmentation
to capture the correlation between this manual segmentation and the remain-
ing manual segmentations. For this task, we apply spatial, contextual and joint
spatial-contextual features, as in [8], to train one classifier for each label l to iden-
tify the voxels assigned to label l in the target manual segmentation. The con-
textual features are extracted from all the remaining manual segmentations. To
effectively handle the contextual features provided by multiple manual segmen-
tations, we merge the contextual features from different manual segmentations
into one label distribution Dj

l for each label l, Dj
l (i) =

1
m−1

∑
k �=j I(S

k
F (i) = l),

where I(·) is an indicator function. The contextual features used in the correla-
tion classifier for rater j and label l are constructed based on Dj

l .

Segmentation Algorithm. The algorithm is summarized below:

1. Given a test image F , apply a host method to produce an initial segmentation
S for it. When applicable, produce one initial segmentation for each rater.

2. For j = 1, ...,m
• Apply the segmentation classifier(s) learned for jth manual segmentation
to produce an improved estimation, Sj

F , based on image F and the initial
segmentation S produced for the rater.

3. For j = 1, ...,m
• Apply the correlation classifier(s) learned for jth manual segmentation
to update Sj

F such that (3) is maximized, i.e. selecting the label with the
largest probability produced by the classifiers at each voxel.

4. If none of the automatic estimations is changed or the maximal iteration is
reached, then output the estimations. Otherwise, goto 3.

3 Experiments

3.1 Imaging Data and Experiment Setup

Data and manual segmentations. For 10 images (5 controls and 5 patients with
mild AD) from the Open Access Series of Imaging Studies (OASIS) [5], we
produced six manual hippocampal segmentations for each image. These manual
segmentations were labeled by three trained experts in two trials.
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Table 1. Left: Inter-rater and intra-rater segmentation overlaps (in Dice 2|A∩B|
|A|+|B| ) be-

tween the three raters. The intra-rater overlaps are between the two segmentation
trails labeled by the same rater. The inter-rater overlaps are averaged over the two
segmentation trials. Right: Hippocampal volume (in voxel) produced by each rater.

raters R1 R2 R3

R1 0.902±0.020 0.872±0.024 0.847±0.032

R2 0.872±0.024 0.915±0.020 0.846±0.043

R3 0.847±0.032 0.846±0.043 0.836±0.046

raters R1 R2 R3

trial 1 1615±267 1787±316 1731±319

trial 2 1683±285 1811±261 1461±232

Table 1(left) summarizes the inter-rater and intra-rater reproducibility of the
manual segmentation. Table 1(right) shows the hippocampal volume labeled by
each rater. Note that R2 consistently labeled larger hippocampi than R1 in
both trials. The segmentations labeled by R3 in the second trial are significantly
smaller than those produced by the same rater in the first trial. Such strong
correlation can be easily seen in most individual subjects, as shown in Fig. 1.

Fig. 1. Illustration of correlation between raters. First row: segmentations produced
by R1(blue) and R2(red) in the first trial. Pink is the overlapped region. Second row:
segmentations produced by R3 in the first (blue) and second trial (red).

For each image, we derived one consensus segmentation using STAPLE [11]
for the three manual segmentations produced in each trial. To incorporate the
correlations between the two trials, we jointly estimate the 6 manual segmenta-
tions and the two inferred segmentations by STAPLE.

Experiment setup. For cross-validation, we randomly selected five images for
training and the remaining 5 images for testing. The experiment was repeated
10 times. In each cross-validation, a different set of training and testing images
were selected. The results reported below are averaged over the 10 experiments.

Details on learning segmentation classifiers. Since the state-of-the-art hippocam-
pus segmentation are all produced by multi-atlas label fusion (MALF), e.g.
[6],[3],[10], we applied MALF as the host segmentation method to produce the
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Fig. 2. Segmentation accuracy (in Dice) at each iteration for all raters. The results
are averaged over 10 cross-validation experiments. The performance of independently
applying error correction to estimate each manual segmentation is given at iteration 0.

initial hippocampus segmentation for corrective learning to learn the segmenta-
tion classifier for each manual segmentation.

Through deformable registration,MALFwarpsmultiple atlases, i.e. pre-labeled
images, to a target image, and uses a “label fusion” strategy to derive a consen-
sus segmentation. To implement MALF, image guided registration is performed
by the Symmetric Normalization (SyN) algorithm implemented by ANTS [1] be-
tween each pair of the atlas image, i.e. the training image, and the test image.
For label fusion, we apply image similarity based local weighted voting technique,
which is shown to be the most effective label fusion techniques in recent studies
[6],[10]. The voting weights were computed based on image patches of size 5×5×5
by using the joint label fusion algorithm [10].

To produce the initial segmentation used in corrective learning for one manual
segmentation, we use the segmentation labeled by the corresponding rater to
define the atlas. For each cross-validation, we also apply MALF to produce an
initial segmentation for each training image by using the remaining training
images as atlases and use the segmentation produced by MALF for training
images to train the segmentation classifiers for each manual segmentation. For
each cross validation, learning all segmentation classifiers and all correlation
classifiers took about 1 hour and 30 minutes on a 2GHz CPU, respectively.

3.2 Results

Convergence. Fig. 2 shows the average segmentation performance produced by
MALF, MALF + corrective learning (iteration 0), and our joint segmentation
algorithm at different iterations. Typically, the iterative optimization converges
within only a few iterations, with the first iteration producing the maximal
performance improvement and dramatic diminishing performance gains in later
iterations. In our experiment, we set the maximal iteration to be 10.

Quantitative comparison. Table 2 compares the performance between ourmethod
with separately estimating each manual segmentation. Corrective learning
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substantially improved the accuracy produced byMALF. Our method further im-
proved the accuracy to the level greater than inter-rater accuracy for each rater.
The improvements for each rater are statistically significant, with p < 0.001 on
the paired Students t-test. Fig. 3 shows some segmentation results produced by
applying corrective learning alone and by our method, respectively.

Table 2. Segmentation accuracy (in Dice) with respect to each manual segmentation.
Rj

k is the segmentation produced by rater Rj in the kth segmentation trial. STPk is
the consensus segmentation produced by STAPLE for the kth segmentation trial.

rater MALF MALF+learning MALF+jointSeg

R1
1 0.865±0.021 0.878±0.014 0.890±0.015

R2
1 0.852±0.020 0.869±0.018 0.881±0.018

R3
1 0.833±0.032 0.837±0.025 0.859±0.022

STP1 0.869±0.023 0.888±0.016 0.900±0.014

R1
2 0.859±0.023 0.864±0.018 0.880±0.021

R2
2 0.861±0.018 0.877±0.017 0.887±0.016

R3
2 0.829±0.035 0.840±0.024 0.857±0.023

STP2 0.871±0.022 0.886±0.016 0.900±0.017

image MALF MALF+learning MALF+JointSeg

Fig. 3. Sagittal views of hippocampus segmentation results. Red: one of the manual
segmentations for the image; Blue: automatic segmentation; Pink: overlap between
manual and automatic.

Our results compare well to the state-of-the-art hippocampus segmentation
performance. For example, [6] reported average ∼0.87 (Dice) for hippocampus
using 29 atlases. [3] reported average 0.887 (Dice) using 79 atlases. Our final
results for R1 and R2 are >0.880 (Dice)2, but we only used 5 training images,
which is only a small fraction of those used by the competing work.

4 Conclusion

As an important evaluation target, manual segmentation is crucial in the de-
velopment of automatic segmentation algorithms. We developed a technique to

2 Our results for R3 are lower due to the poor intra-rater performance.
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incorporate multiple inconsistent manual segmentations to improve the perfor-
mance of automatic segmentation. Via experiments on hippocampus segmenta-
tion in MRI, we showed the advantage of our method over traditional approaches.
Note that including the segmentations produced by less reliable raters helped to
better estimate the segmentations by more reliable raters. Our work offers a new
perspective on how to more effectively use the valuable manual segmentations.
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