Skip to main content

Biotechnological and Medical Exploitations of Toxin-Antitoxin Genes and Their Components

  • Chapter
  • First Online:
Prokaryotic Toxin-Antitoxins

Abstract

We review here the state of the art on the application of toxin–antitoxin pairs in biotechnology and medicine, touching on technologies that range from simple selection of recombinant DNA in the laboratory, to complex and ambitious therapeutic strategies that may become routine in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S., Mishra, N. K., Bhatnagar, S., & Bhatnagar, R. (2010). PemK toxin of Bacillus anthracis is a ribonuclease: An insight into its active site, structure, and function. Journal of Biological Chemistry, 285, 7254–7270.

    Article  PubMed  CAS  Google Scholar 

  • Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128, 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  • Amitai, S., Yassin, Y., & Engelberg-Kulka, H. (2004). MazF-mediated cell death in Escherichia coli: A point of no return. Journal of Bacteriology, 186, 8295–8300.

    Article  PubMed  CAS  Google Scholar 

  • Arase, K., Saijo, K., Watanabe, H., Konno, A., Arase, H., & Saito, T. (1999). Ablation of a specific cell population by the replacement of a uniquely expressed gene with a toxin gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 9264–9268.

    Article  PubMed  CAS  Google Scholar 

  • Bai, H., Sang, G., You, Y., Xue, X., Zhou, Y., Hou, Z., et al. (2012). Targeting RNA polymerase primary sigma70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS ONE, 7, e29886.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, P. (1995). New ccdB positive-selection cloning vectors with kanamycin or chloramphenicol selectable markers. Gene, 162, 159–160.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, P. (1996). Positive selection of recombinant DNA by CcdB. BioTechniques, 21, 320–323.

    PubMed  CAS  Google Scholar 

  • Bernard, P., & Couturier, M. (1992). Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. Journal of Molecular Biology, 226, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, P., Gabant, P., Bahassi, E. M., & Couturier, M. (1994). Positive-selection vectors using the F plasmid ccdB killer gene. Gene, 148, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Carattoli, A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 53, 2227–2238.

    Article  PubMed  CAS  Google Scholar 

  • Chono, H., Matsumoto, K., Tsuda, H., Saito, N., Lee, K., Kim, S., et al. (2011a). Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase. Human Gene Therapy, 22, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Chono, H., Saito, N., Tsuda, H., Shibata, H., Ageyama, N., Terao, K., et al. (2011b). In vivo safety and persistence of endoribonuclease gene-transduced CD4+ T cells in cynomolgus macaques for HIV-1 gene therapy model. PLoS ONE, 6, e23585.

    Article  PubMed  CAS  Google Scholar 

  • Chopra, N., Agarwal, S., Verma, S., Bhatnagar, S., & Bhatnagar, R. (2011). Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: Deletion mutant studies highlight its modular structure and repressor function. Journal of Computer-Aided Molecular Design, 25, 275–291.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin–antitoxin system. Molecular Microbiology, 51, 1705–1717.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. (2007). Microbes have the last word. A drastic re-evaluation of antimicrobial treatment is needed to overcome the threat of antibiotic-resistant bacteria. EMBO Reports, 8, 616–621.

    Article  PubMed  CAS  Google Scholar 

  • de la Cueva-Mendez, G., Mills, A. D., Clay-Farrace, L., Diaz-Orejas, R., & Laskey, R. A. (2003). Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO Journal, 22, 246–251.

    Article  PubMed  Google Scholar 

  • de la Cueva-Mendez, G., & Pimentel, B. (2007). Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Reports, 8, 458–464.

    Article  PubMed  Google Scholar 

  • Faridani, O. R., Nikravesh, A., Pandey, D. P., Gerdes, K., & Good, L. (2006). Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Research, 34, 5915–5922.

    Article  PubMed  CAS  Google Scholar 

  • Fiebig, A., Castro Rojas, C. M., Siegal-Gaskins, D., & Crosson, S. (2010). Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin–antitoxin systems. Molecular Microbiology, 77, 236–251.

    Article  PubMed  CAS  Google Scholar 

  • Gabant, P., Van Reeth, T., Dreze, P. L., Faelen, M., Szpirer, C., & Szpirer, J. (2000). New positive selection system based on the parD (kis/kid) system of the R1 plasmid. BioTechniques, 28, 784–788.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Christensen, S. K., & Lobner-Olesen, A. (2005). Prokaryotic toxin–antitoxin stress response loci. Nature Reviews Microbiology, 3, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., Rasmussen, P. B., & Molin, S. (1986). Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 3116–3120.

    Article  PubMed  CAS  Google Scholar 

  • Giuliodori, A. M., Di Pietro, F., Marzi, S., Masquida, B., Wagner, R., Romby, P., et al. (2010). The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Molecular Cell, 37, 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S. A., & Goldberg, A. L. (1987). An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. Journal of Biological Chemistry, 262, 4508–4515.

    PubMed  CAS  Google Scholar 

  • Goldstein, J., Pollitt, N. S., & Inouye, M. (1990). Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 87, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Guglielmini, J., & Van Melderen, L. (2011). Bacterial toxin–antitoxin systems: Translation inhibitors everywhere. Mobile Genetic Elements, 1, 283–290.

    Article  PubMed  Google Scholar 

  • Heath, R. J., White, S. W., & Rock, C. O. (2001). Lipid biosynthesis as a target for antibacterial agents. Progress in Lipid Research, 40, 467–497.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, A., Ogura, T., & Hiraga, S. (1985). Effects of the ccd function of the F plasmid on bacterial growth. Journal of Bacteriology, 163, 841–849.

    PubMed  CAS  Google Scholar 

  • Jensen, L. B., Garcia-Migura, L., Valenzuela, A. J., Lohr, M., Hasman, H., & Aarestrup, F. M. (2010). A classification system for plasmids from enterococci and other Gram-positive bacteria. Journal of Microbiol Methods, 80, 25–43.

    Article  CAS  Google Scholar 

  • Jones, P. G., VanBogelen, R. A., & Neidhardt, F. C. (1987). Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 169, 2092–2095.

    PubMed  CAS  Google Scholar 

  • Kamada, K., Hanaoka, F., & Burley, S. K. (2003). Crystal structure of the MazE/MazF complex: Molecular bases of antidote-toxin recognition. Molecular Cell, 11, 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. G., Hwang, H. J., Kim, M. S., Lee, D. Y., Chung, S. K., Lee, J. M., et al. (2004). pTOC-KR: A positive selection cloning vector based on the ParE toxin. BioTechniques, 36(60–62), 64.

    Google Scholar 

  • Koga, M., Otsuka, Y., Lemire, S., & Yonesaki, T. (2011). Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics, 187, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Koprunner, M., Thisse, C., Thisse, B., & Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes & Development, 15, 2877–2885.

    CAS  Google Scholar 

  • Kristoffersen, P., Jensen, G. B., Gerdes, K., & Piskur, J. (2000). Bacterial toxin–antitoxin gene system as containment control in yeast cells. Applied and Environment Microbiology, 66, 5524–5526.

    Article  CAS  Google Scholar 

  • Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P., & Van Melderen, L. (2011). Diversity of bacterial type II toxin–antitoxin systems: A comprehensive search and functional analysis of novel families. Nucleic Acids Research, 39, 5513–5525.

    Article  PubMed  CAS  Google Scholar 

  • Leung, E., Datti, A., Cossette, M., Goodreid, J., McCaw, S. E., Mah, M., et al. (2011). Activators of cylindrical proteases as antimicrobials: Identification and development of small molecule activators of ClpP protease. Chemistry & Biology, 18, 1167–1178.

    Article  CAS  Google Scholar 

  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, S122–S129.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Machon, C., Tabone, M., Gonzalez-Pastor, J. E., Daugelavicius, R., Ayora, S., et al. (2012). The zeta toxin induces a set of protective responses and dormancy. PLoS ONE, 7, e30282.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Martin, M. T., Camacho, A. G., Lurz, R., Antelmann, H., Hecker, M., et al. (2006). pSM19035-encoded zeta toxin induces stasis followed by death in a subpopulation of cells. Microbiology, 152, 2365–2379.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Rey, O., Balsa, D., Pellicer, T., & Alonso, J. C. (2010). A toxin–antitoxin module as a target for antimicrobial development. Plasmid, 63, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G., & Gerdes, K. (2011). Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 108, 13206–13211.

    Article  PubMed  CAS  Google Scholar 

  • Mao, L., Inoue, K., Tao, Y., Montelione, G. T., McDermott, A. E., & Inouye, M. (2011). Suppression of phospholipid biosynthesis by cerulenin in the condensed single-protein-production (cSPP) system. Journal of Biomolecular NMR, 49, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Mao, L., Tang, Y., Vaiphei, S. T., Shimazu, T., Kim, S. G., Mani, R., et al. (2009). Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system. Journal of Structural and Functional Genomics, 10, 281–289.

    Article  PubMed  Google Scholar 

  • Mao, L., Vaiphei, S. T., Shimazu, T., Schneider, W. M., Tang, Y., Mani, R., et al. (2010). The E. coli single protein production system for production and structural analysis of membrane proteins. Journal of Structural and Functional Genomics, 11, 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, J. L., & Baquero, F. (2002). Interactions among strategies associated with bacterial infection: Pathogenicity, epidemicity, and antibiotic resistance. Clinical Microbiology Reviews, 15, 647–679.

    Article  PubMed  Google Scholar 

  • Meng, J., Kanzaki, G., Meas, D., Lam, C. K., Crummer, H., Tain, J., et al. (2012). A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes. FEMS Microbiology Letters, 329, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Miki, T., Yoshioka, K., & Horiuchi, T. (1984). Control of cell division by sex factor F in Escherichia coli. I. The 42.84-43.6 F segment couples cell division of the host bacteria with replication of plasmid DNA. Journal of Molecular Biology, 174, 605–625.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, E. M., & Hergenrother, P. J. (2007). Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proceedings of the National Academy of Sciences of the United States of America, 104, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Nehlsen, K., Herrmann, S., Zauers, J., Hauser, H., & Wirth, D. (2010). Toxin–antitoxin based transgene expression in mammalian cells. Nucleic Acids Research, 38, e32.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A., Hansen, L. H., & Sorensen, S. J. (2009). Conjugative plasmids: Vessels of the communal gene pool. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 2275–2289.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., & Hiraga, S. (1983). Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the United States of America, 80, 4784–4788.

    Article  PubMed  CAS  Google Scholar 

  • Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., et al. (2005). Antimicrobial resistance in developing countries. Part I: Recent trends and current status. The Lancet Infectious Diseases, 5, 481–493.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard, M., Borch, J., & Gerdes, K. (2009). RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. Journal of Molecular Biology, 394, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, D. P., & Gerdes, K. (2005). Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. H., Yamaguchi, Y., & Inouye, M. (2012). Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Applied and Environment Microbiology, 78, 3794–3799.

    Article  CAS  Google Scholar 

  • Peleg, A. Y., & Hooper, D. C. (2010). Hospital-acquired infections due to Gram-negative bacteria. New England Journal of Medicine, 362, 1804–1813.

    Article  PubMed  CAS  Google Scholar 

  • Peubez, I., Chaudet, N., Mignon, C., Hild, G., Husson, S., Courtois, V., et al. (2010). Antibiotic-free selection in E. coli: New considerations for optimal design and improved production. Microbial Cell Factories, 9, 65.

    Article  PubMed  Google Scholar 

  • Pimentel, B., Madine, M. A., & de la Cueva-Mendez, G. (2005). Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1. EMBO Journal, 24, 3459–3469.

    Article  PubMed  CAS  Google Scholar 

  • Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., et al. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877–882.

    Article  PubMed  CAS  Google Scholar 

  • Raskatov, J. A., Meier, J. L., Puckett, J. W., Yang, F., Ramakrishnan, P., & Dervan, P. B. (2012). Modulation of NF-kappaB-dependent gene transcription using programmable DNA minor groove binders. Proceedings of the National Academy of Sciences of the United States of America, 109, 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  • Reckel, S., Lohr, F., & Dotsch, V. (2005). In-cell NMR spectroscopy. ChemBioChem, 6, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. C., Spangler, C., & Helinski, D. R. (1993). Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad host-range plasmid RK2. Journal of Biological Chemistry, 268, 27109–27117.

    PubMed  CAS  Google Scholar 

  • Roman, G., Endo, K., Zong, L., & Davis, R. L. (2001). P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 12602–12607.

    Article  PubMed  CAS  Google Scholar 

  • Sass, P., Josten, M., Famulla, K., Schiffer, G., Sahl, H. G., Hamoen, L., et al. (2011). Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proceedings of the National Academy of Sciences of the United States of America, 108, 17474–17479.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, W. M., Inouye, M., Montelione, G. T., & Roth, M. J. (2009). Independently inducible system of gene expression for condensed single protein production (cSPP) suitable for high efficiency isotope enrichment. Journal of Structural and Functional Genomics, 10, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H. Y., et al. (2011). TADB: A web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39, D606–D611.

    Article  PubMed  Google Scholar 

  • Shapira, A., Shapira, S., Gal-Tanamy, M., Zemel, R., Tur-Kaspa, R., & Benhar, I. (2012). Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS ONE, 7, e32320.

    Article  PubMed  CAS  Google Scholar 

  • Shimazu, T., Degenhardt, K., Nur, E. K. A., Zhang, J., Yoshida, T., Zhang, Y., et al. (2007). NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes & Development, 21, 929–941.

    Article  CAS  Google Scholar 

  • Slanchev, K., Stebler, J., de la Cueva-Mendez, G., & Raz, E. (2005). Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102, 4074–4079.

    Article  PubMed  CAS  Google Scholar 

  • Summers, D. K., & Sherratt, D. J. (1984). Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell, 36, 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Zhang, J., Liu, M., Woychik, N. A., & Inouye, M. (2005). Single protein production in living cells facilitated by an mRNA interferase. Molecular Cell, 18, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Szpirer, C. Y., & Milinkovitch, M. C. (2005). Separate-component-stabilization system for protein and DNA production without the use of antibiotics. BioTechniques, 38, 775–781.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger, T. C., Stuart, D., & Yokoyama, S. (2009). Lessons from structural genomics. Annual Review of Biophysics, 38, 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Tzika, A. C., Rosa, S. F., Fabiani, A., Snell, H. L., Snell, H. M., Marquez, C., et al. (2008). Population genetics of Galapagos land iguana (genus Conolophus) remnant populations. Molecular Ecology, 17, 4943–4952.

    Article  PubMed  Google Scholar 

  • Vaiphei, S. T., Tang, Y., Montelione, G. T., & Inouye, M. (2011). The use of the condensed single protein production system for isotope-labeled outer membrane proteins, OmpA and OmpX in E. coli. Molecular Biotechnology, 47, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Van Melderen, L., & Saavedra De Bast, M. (2009). Bacterial toxin–antitoxin systems: More than selfish entities? PLoS Genetics, 5(3),  .

    Google Scholar 

  • Vandermeulen, G., Marie, C., Scherman, D., & Preat, V. (2011). New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Molecular Therapy, 19, 1942–1949.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, J., & Messing, J. (1982). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 19, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Walhout, A. J., Temple, G. F., Brasch, M. A., Hartley, J. L., Lorson, M. A., van den Heuvel, S., et al. (2000). GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 328, 575–592.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., & Wood, T. K. (2011). Toxin–antitoxin systems influence biofilm and persister cell formation and the general stress response. Applied and Environment Microbiology, 77, 5577–5583.

    Article  CAS  Google Scholar 

  • Watts, A. (2005). Solid-state NMR in drug design and discovery for membrane-embedded targets. Nature Reviews Drug Discovery, 4, 555–568.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. J., Halvorsen, E. M., Dwyer, E. M., DiFazio, R. M., & Hergenrother, P. J. (2011). Toxin–antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS Microbiology Letters, 322, 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. J., & Hergenrother, P. J. (2012). Artificial activation of toxin–antitoxin systems as an antibacterial strategy. Trends in Microbiology, 20, 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Xia, B., Ke, H., Jiang, W., & Inouye, M. (2002). The Cold Box stem-loop proximal to the 5’-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature. Journal of Biological Chemistry, 277, 6005–6011.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., & Inouye, M. (2011). Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nature Reviews Microbiology, 9, 779–790.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T. A., Gerdes, K., & Tunnacliffe, A. (2002). Bacterial toxin RelE induces apoptosis in human cells. FEBS Letters, 519, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Gao, C., Wang, Y., Zhang, H., & He, Z. G. (2010). Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS ONE, 5, e10672.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G., & Inouye, M. (2003). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Molecular Cell, 12, 913–923.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, L., Sharp, J. D., Kobayashi, H., Woychik, N. A., & Inouye, M. (2010). Noncognate Mycobacterium tuberculosis toxin–antitoxins can physically and functionally interact. Journal of Biological Chemistry, 285, 39732–39738.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in Dr. de la Cueva-Méndez’s laboratory is supported by Fundación Pública Andaluza Progreso y Salud, which depends on the Consejeria de Salud y Bienestar Social of the Junta de Andalucia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo de la Cueva-Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de la Cueva-Méndez, G., Pimentel, B. (2013). Biotechnological and Medical Exploitations of Toxin-Antitoxin Genes and Their Components. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_19

Download citation

Publish with us

Policies and ethics