
NEON Crypto

Daniel J. Bernstein1 and Peter Schwabe2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Research Center for Information Technology Innovation

and Institute of Information Science
Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan

peter@cryptojedi.org

Abstract. NEON is a vector instruction set included in a large frac-
tion of new ARM-based tablets and smartphones. This paper shows that
NEON supports high-security cryptography at surprisingly high speeds;
normally data arrives at lower speeds, giving the CPU time to handle
tasks other than cryptography. In particular, this paper explains how
to use a single 800MHz Cortex A8 core to compute the existing NaCl
suite of high-security cryptographic primitives at the following speeds:
5.60 cycles per byte (1.14 Gbps) to encrypt using a shared secret key,
2.30 cycles per byte (2.78 Gbps) to authenticate using a shared secret
key, 527102 cycles (1517/second) to compute a shared secret key for a
new public key, 624846 cycles (1280/second) to verify a signature, and
244655 cycles (3269/second) to sign a message. These speeds make no
use of secret branches and no use of secret memory addresses.

Keywords: vectorization-friendly cryptographic primitives, efficient soft-
ware implementations, smartphones, tablets, there be dragons.

1 Introduction

The Apple A4 CPU used in the iPad 1 (2010, 1GHz) and iPhone 4 (2010, 1GHz)
contains a single Cortex A8 CPU core. The same CPU core also appears in many
other tablets and smartphones. The point of this paper is that the Cortex A8
achieves impressive speeds for high-security cryptography:

• 5.60 cycles per byte to encrypt a message using a shared secret key;
• 2.30 cycles per byte to authenticate a message using a shared secret key;
• 527102 cycles to compute a shared secret key for a new public key;
• 624846 cycles to verify a signature on a short message; and
• 244655 cycles to sign a short message.

This work was supported by the National Science Foundation under grant 1018836;
and by the European Commission under Contract ICT-2007-216676 ECRYPT
II. Permanent ID of this document: 9b53e3cd38944dcc8baf4753eeb1c5e7. Date:
2012.06.19.

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 320–339, 2012.
c© International Association for Cryptologic Research 2012



NEON Crypto 321

We do not claim that all high-security cryptographic primitives run well on the
Cortex A8. Quite the opposite: we rely critically on a synergy between

• the capabilities of the “NEON” vector unit in the Cortex A8 and
• the parallelizability of some carefully selected cryptographic primitives.

The primitives we use are Salsa20 [9], a member of the final portfolio from
the ECRYPT Stream Cipher Project; Poly1305 [5], a polynomial-evaluation
message-authentication code similar to the message-authentication code in GCM;
Curve25519 [6], an elliptic-curve Diffie–Hellman system; and Ed25519 [10], an
elliptic-curve signature system that was introduced at CHES 2011. The rest of
this paper explains how we use NEON to obtain such high speeds for these
primitives.

It is not a coincidence that our selection matches the default primitives in
NaCl, the existing “Networking and Cryptography library” [13] used in appli-
cations such as DNSCrypt [45]; vectorizability was one of the design criteria for
NaCl. It is nevertheless surprising that a rather small vector unit, carrying out
just one arithmetic instruction per cycle, can run these primitives at the speeds
listed above. A high-power Intel Core 2 CPU core (at 45nm, like the Apple A4),
with a 64-bit instruction set and three full 128-bit vector units, has cycle counts
of 3.98/byte, 3.32/byte, 307053, 365742, and 106542 for the same five tasks with
the best reported assembly-language implementations of the same primitives in
the SUPERCOP benchmarking suite [12]; the Cortex A8 ends up much more
competitive than one might expect. We also do better than the 697080 Cell cy-
cles for Curve25519 achieved in [17], even though the Cell has more powerful
permutation instructions and many more registers.

Side Channels. All memory addresses and branch conditions in our software
are public, depending only on message lengths. There is no data flow from secret
data (keys, plaintext, etc.) to cache timing, branch timing, etc. We do not claim
that our software is immune to hardware side-channel attacks such as power
analysis, but we do claim that it is immune to software side-channel attacks
such as [44], [2], and [47].

Benchmarking Platform. The speeds reported above were measured on a
low-cost Hercules eCAFE netbook (released and purchased in 2011) containing
a Freescale i.MX515 CPU. This CPU has a single 800MHz Cortex A8 core.
The same machine is also visible in the SUPERCOP benchmarks as h4mx515e.
Occasionally we make comparisons to benchmarks that use OpenSSL or a C
compiler; the netbook is shipped with Ubuntu 10.04, and in particular OpenSSL
0.9.8k and gcc 4.4.3, neither of which we claim is optimal.

All of our software has been checked against standard test suites. We are plac-
ing our software online to maximize verifiability of our results, and are placing it
into the public domain to maximize reusability. Some of our preliminary results
are already online and included in various public benchmark reports, but this
paper is our first formal announcement and achieves even better speeds.

More CPUs with NEON. The Cortex A8 is not the only hardware design
supporting the NEON instruction set. The Apple A5 CPU used in the iPad 2



322 D.J. Bernstein and P. Schwabe

(2011, 1GHz) and iPhone 4S (2011, 800MHz) contains two Cortex A9 CPU cores
with NEON units. The NVIDIA Tegra 3 CPU used in the 2011 Asus Eee Pad
Transformer Prime tablet (2011, 1.3GHz) and HTC One X smartphone (2012,
1.5GHz) contains four Cortex A9 CPU cores with NEON units. Qualcomm’s
“Snapdragon” series of CPUs reportedly includes a different NEON microarchi-
tecture for the older “Scorpion” cores and a faster NEON microarchitecture for
the newer “Krait” cores.

We have very recently benchmarked our software on a Scorpion, obtaining cy-
cle counts of 5.40/byte, 1.89/byte, 606824, 756795, and 511123 for the five tasks
listed above. We expect that further optimization for Cortex A9 and Snapdragon
will produce even better results. The rest of this paper focuses on the original
Cortex A8 NEON microarchitecture.

One should not think that all tablets and smartphones support NEON in-
structions. For example, NVIDIA omitted NEON from the Cortex A9 cores in
the Tegra 2; lower-cost ARM11 processors do not support NEON and continue to
appear in new devices; and some devices use Intel processors with a quite differ-
ent instruction set. However, Apple alone has sold more than 50 million tablets
with NEON and many more smartphones with NEON, and our sampling sug-
gests that NEON also appears in the majority of new tablets and smartphones
from other manufacturers. This paper turns all of these devices into powerful
cryptographic engines, capable of protecting large volumes of data while leaving
the CPU with enough time to actually do something useful with that data.

2 NEON Instructions and Speeds

This section reviews NEON’s capabilities. This is not a comprehensive review:
it focuses on the most important instructions for our software, and the main
bottlenecks in those instructions. All comments about speed refer to the NEON
unit in a single Cortex A8 core.

Registers. The NEON architecture has 16 128-bit vector registers (2048 bits
overall), q0 through q15. It also has 32 64-bit vector registers, d0 through d31,
but these registers share physical space with the 128-bit vector registers: q0 is
the concatenation of d0 and d1, q1 is the concatenation of d2 and d3, etc.

For comparison, the basic ARM architecture has only 16 32-bit registers, r0
through r15. Register r13 is the stack pointer and register r15 is the program
counter, leaving only 14 32-bit registers (448 bits overall) for general use. One
of the most obvious benefits of NEON for cryptography is that it provides much
more space in registers, reducing the number of loads and stores that we need.

Syntax. We rarely look at NEON register names, even though we write code
in assembly: we use a higher-level assembly syntax that allows any number of
names for 128-bit vector registers. For example, we write

diag3 ^= b0

and then an automatic translator produces traditional assembly language

veor q6,q6,q14



NEON Crypto 323

for assembly by the standard GNU assembler gas; here the translator has se-
lected q6 for diag3 and q14 for b0. We nevertheless pay close attention to the
number of “live” 128-bit registers at each moment, reorganizing our computa-
tions to fit reasonably large amounts of work into registers.

The syntax is our own design. To build the translator we reused the existing
qhasm toolkit [7] and wrote a short ARM+NEON machine-description file for
qhasm. This file contains, for example, the line

4x r=s+t:>r=reg128:<s=reg128:<t=reg128:asm/vadd.i32 >r,<s,<t:

stating our syntax and the gas assembly-language syntax for a 4-way vectorized
32-bit addition, and also identifying the inputs and outputs of the instruction
for the qhasm register allocator. The code examples in the rest of this paper use
our syntax for the sake of readability; we do not assume that readers are already
familiar with NEON.

We have also experimented extensively with writing NEON code in C, us-
ing compiler extensions for NEON instructions. However, we have found that
assembly language gives us far better tradeoffs between software speed and pro-
gramming effort. Assembly language has a reputation for being hard to read and
write, but typical code such as

4x a0 = diag1 + diag0

4x b0 = a0 << 7

in our assembly-language syntax is as straightforward as

a0 = diag1 + diag0;

b0 = vshlq_n_u32(a0,7);

in C. The critical advantage of assembly language is that it provides more control.
We frequently find that every available C compiler produces poorly scheduled
code, leaving the NEON unit mostly idle; changing the C code to produce better
assembly-language scheduling is a hit-and-miss affair, and it is also not clear
how the compiler could be modified to do better, since the C language provides
no way to express instruction priorities. Writing directly in assembly language
eliminates this difficulty, allowing us to focus on higher-level questions of how to
decompose larger computations (such as multiplications modulo 2255 − 19) into
pieces suitable for vectorization.

Arithmetic Instructions. The Cortex A8 NEON microarchitecture has one
128-bit arithmetic unit. A typical arithmetic instruction such as

4x a = b + c

occupies the NEON arithmetic unit for one cycle. This instruction partitions
the 128-bit output register a into four 32-bit quantities a[0], a[1], a[2], a[3],
similarly partitions b and c, and then has the same effect as



324 D.J. Bernstein and P. Schwabe

a[0] = b[0] + c[0]

a[1] = b[1] + c[1]

a[2] = b[2] + c[2]

a[3] = b[3] + c[3]

where as usual + means addition modulo 232. Readers accustomed to two-
operand architectures should note that there is no requirement to split this
instruction into a copy a = b followed by 4x a += c.

This instruction passes through several single-cycle NEON pipeline stages N1,
N2, etc. It reads its input when it is in stage N2; if the input will not be ready
then it already predicts the problem at the beginning of the pipeline and stalls
there, also stalling subsequent NEON instructions. It makes its output available
in stage N4, two cycles after reading the input, so another addition instruction
that begins two cycles later (reaching N2 when the first instruction reaches N4)
can read the output without stalling.

We comment that “addition has 2-cycle latency” would be an oversimplifica-
tion, for reasons that will be clear in the next paragraph. We also warn readers
that ARM’s Cortex A8 manual [3] reports stage N3 for the output, even though
an addition that begins the next cycle will in fact stall. This is not an isolated
error in the manual, but rather an unusual convention for reporting output
availability: ARM consistently lists the stage just before the output is ready. An
online Cortex A8 cycle counter by Sobole [40] correctly displays this latency,
although we encountered some other cases where it was too pessimistic.

A logical instruction such as

a = b ^ c

has the same performance as an addition. A subtraction instruction

4x a = b - c

occupies the arithmetic unit for one cycle, just like addition, but needs the c

input one cycle earlier, in stage N1. Addition and subtraction thus each have
latency 2 as input to an addition or to the positive part of a subtraction, but
latency 3 as input to the negative part of a subtraction.

Shifting by a fixed distance is like subtraction in that it needs input in stage
N1 and generates output in stage N4. NEON can combine three instructions for
rotation into two instructions—

4x a = b << 7

4x a insert= b >> 25

—but the second instruction occupies the arithmetic unit for two cycles and
generally causes larger latency problems than a separate shift and xor.

A pair of 32-bit multiplications, each producing a 64-bit result, uses one in-
struction:

c[0,1] = a[0] signed* b[0]; c[2,3] = a[1] signed* b[1]



NEON Crypto 325

This instruction occupies the arithmetic unit for two cycles, for a total through-
put of one 32× 32 → 64-bit multiplication per cycle. This instruction reads b in
stage N1, reads a in stage N2, and makes c available in stage N8. This instruction
has a multiply-accumulate variant, carrying out additions for free:

c[0,1] += a[0] signed* b[0]; c[2,3] += a[1] signed* b[1]

The accumulator is normally read in stage N3, but is read much later if it is the
result of a similar multiplication instruction. A typical sequence such as

c[0,1] = a[0] unsigned* b[0]; c[2,3] = a[1] unsigned* b[1]

c[0,1] += e[2] unsigned* f[2]; c[2,3] += e[3] unsigned* f[3]

c[0,1] += g[0] unsigned* h[2]; c[2,3] += g[1] unsigned* h[3]

takes six cycles without any stalls.

Loads, Stores, and Permutations. There is a 128-bit NEON load/store unit
that runs in parallel with the NEON arithmetic unit. An aligned 128-bit or
aligned 64-bit load or store consumes the load/store unit for one cycle and makes
its result available in N2. Alignment is static (encoded explicitly in the instruc-
tion), not dynamic:

x01 aligned= mem128[input_1]; input_1 += 16

The load/store instruction does not allow an offset from the index register but
does allow subsequent increment of the index register by the load amount or
by another register. There are separate instructions for an unaligned 128-bit or
unaligned 64-bit load or store, for an unaligned 64-bit load or store with an
offset, and various other possibilities, each consuming the load/store unit for at
least two cycles.

NEON includes a few permutation instructions that consume the load/store
unit for one cycle: for example,

r = s[1] t[2] r[2,3]

takes a single cycle to replace r[0] and r[1] with s[1] and t[2] respectively,
leaving r[2] and r[3] unchanged. This instruction reads s and t in stage N1
and writes r in stage N3. There are more permutation instructions that consume
the load/store unit for two cycles.

Each NEON cycle dispatches at best one instruction to the arithmetic unit
and one instruction to the load/store unit. These two dispatches can occur in
either order. For example, a sequence of 6 single-cycle instructions of the form
A LS A LS A LS will take 3 NEON cycles (A LS, A LS, A LS); a sequence LS
A A LS LS A will take 3 NEON cycles (LS A, A LS, LS A); but a sequence LS
LS LS A A A will take 5 NEON cycles (LS, LS, LS A, A, A).

A c-cycle instruction is dispatched in the same way as c adjacent single-cycle
instructions. For example, the permutation instruction in

4x a2 = diag3 + diag2

diag3 = diag3[3] diag3[0,1,2]

4x next_a2 = next_diag3 + next_diag2



326 D.J. Bernstein and P. Schwabe

takes two LS cycles, so overall this sequence takes two cycles (A LS, LS A).
Occasional permutations thus do not cost any cycles. As another example, one
can interleave two-cycle permutations with two-cycle multiplications.

3 Encrypt Using a Shared Secret Key:
5.60 Cycles/Byte for Salsa20

This section explains how to encrypt data with the Salsa20 stream cipher [9] at
5.60 Cortex A8 cycles/byte: e.g., 1.14 Gbps on an 800MHz core. The inner loop
uses 4.58 cycles/byte and scales linearly with the number of cipher rounds; for
example, Salsa20/12 uses 2.75 cycles/byte for the inner loop and 3.77 cycles/byte
for the entire cipher. (These are long-message figures, but the per-message over-
head is reasonably small: for example, a 1536-byte message with full Salsa20 uses
5.75 cycles/byte.)

For comparison, [29] reports that a new AES-128-CTR assembly-language
implementation, contributed to OpenSSL by Polyakov, runs at 25.4 Cortex A8
cycles per byte (0.25 Gbps at 800MHz). There is no indication that this speed in-
cludes protection against software side-channel attacks; in fact, the recent paper
[47] by Weiß, Heinz, and Stumpf demonstrated Cortex A8 cache-timing leakage
of at least half the AES key bits from OpenSSL and several other AES implemen-
tations. We have written our own NEON AES-128-CTR implementation using
the bitslicing approach by Käsper and Schwabe [23], protecting against side-
channel attacks and at the same time setting a new Cortex A8 speed record of
19.12 cycles/byte (0.33 Gbps at 800MHz), but obviously Salsa20 is much faster.

The eBASC stream-cipher benchmarks [12] report, for Cortex A8, two other
ciphers providing comparable long-message speeds: 5.77 cycles/byte for NLS v2
and 7.18 cycles/byte for TPy. NLS v2 is certainly fast, but it is limited to a 128-
bit key and 264 bits of output, it relies on S-box lookups that would incur extra
cost to protect against cache-timing attacks, and in general it does not appear
to have as large a security margin as Salsa20. We see our results as showing that
the same speeds can be achieved with higher security. TPy is less competitive: it
relies on random access to a large secret array, requiring an expensive setup for
each nonce (not visible in the long-message timings) and incurring vastly higher
costs for protection against cache-timing attacks.

Review of Salsa20; Non-NEON Bottlenecks. Salsa20 expands a 256-bit
key and a 64-bit nonce into a long output stream, and xors this stream with the
plaintext to produce ciphertext. The stream is generated in 64-byte blocks. The
main bottleneck in generating each block is a series of 20 rounds, each consisting
of 16 32-bit add-rotate-xor sequences such as the following:

s4 = x0 + x12

x4 ^= (s4 >>> 25)

This might already seem to be a perfect fit for the basic 32-bit ARM instruction
set, without help from NEON. The Cortex A8 has two 32-bit execution units;



NEON Crypto 327

addition occupies one unit for one cycle, and rotate-xor occupies one unit for
one cycle. One would thus expect 320 add-rotate-xor sequences to occupy both
integer execution units for 320 cycles, i.e., 5 cycles per byte.

However, there is a latency of 2 cycles between the two instructions shown
above, and an overall latency of 3 cycles between the availability of x0 and the
availability of x4. Furthermore, the ARM architecture provides only 14 registers,
but Salsa20 needs at least 17 active values: x0 through x15 together with a sum
such as s4. (One can overwrite x0 with s4, but only at the expense of extra
arithmetic to restore x0 afterwards.) Loads and stores occupy the execution
units, taking time away from arithmetic operations. (ARM can merge two loads
of adjacent registers into a single instruction, but this instruction consumes both
execution units for one cycle and the first execution unit for another cycle.) There
are also various overheads outside the 20-round inner loop. Compiling several
different C implementations of Salsa20 with many different compiler options did
not beat 15 cycles per byte.

Internal Parallelization; Vectorization; NEON Bottlenecks. Each Salsa20
round has 4-way parallelism, with 4 independent add-rotate-xor sequences to
carry out at each moment. Two parallel computations hide some latencies but
require 8 loads and stores per round with our best instruction schedule; three or
four parallel computations would hide all latencies but would require even more
loads and stores per round.

NEON has far more space in registers, and its 128-bit arithmetic unit can
perform 4 32-bit operations in each cycle. The 4 operations to carry out at each
moment in Salsa20 naturally form a 4-way vector operation, at the cost of three
128-bit permutations per round. Salsa20 thus seems to be a natural fit for NEON.

However, NEON rotation consumes 3 operations as discussed in Section 2,
so add-rotate-xor consumes 5 operations, at least 1.25 cycles; 5 add-rotate-xor
operations per output byte consume at least 6.25 cycles per byte. Furthermore,
NEON latencies are even higher than basic ARM latencies. The lowest-latency
sequence of instructions for add-rotate-xor is

4x a0 = diag1 + diag0

4x b0 = a0 << 7

4x a0 unsigned>>= 25

diag3 ^= b0

diag3 ^= a0

with total latency 9 to the next addition: the individual latencies are 3 (N4
addition output a0 to N1 shift input), 0 (but carried out the next cycle since
the arithmetic unit is busy), 2 (N4 shift output b0 to N2 xor input), 2 (N4 xor
output diag3 to N2 xor input), and 2 (N4 xor output diag3 to N2 addition
input). A straightforward NEON implementation cannot do better than 11.25
cycles per byte.

External Parallelization. We do better by taking advantage of another level
of parallelizability in Salsa20: Salsa20, like AES-CTR, generates output blocks



328 D.J. Bernstein and P. Schwabe

independently as functions of a simple counter. Computing two output blocks
in parallel with the following pattern of add-rotate-xor operations—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

+ << >> ^ ^ + << >> ^ ^

+ << >> ^ ^ + << >> ^ ^

—hides almost all NEON latencies, reducing our inner loop to 44 cycles per
round for both blocks, i.e., 880 cycles for 20 rounds producing 128 bytes, i.e.,
6.875 cycles per byte. Computing three output blocks in parallel still fits into
NEON registers (with a slightly trickier pattern of operations—the most obvious
patterns would need 18 registers), further reducing our inner loop to 6.25 cycles
per byte, and alleviates latency issues enough to allow two-instruction rotations,
but as far as we can tell this is outweighed by somewhat lower effectiveness of
the speedup discussed in the next subsection.

Previous work on Salsa20 for other 128-bit vector architectures had vector-
ized across four output blocks. However, this needs at least 17 active vectors
(and more to hide latencies), requiring extra instructions for loads and stores,
more than the number of permutation instructions saved. This would also add
overhead outside the inner loop and would interfere with the speedup described
in the next subsection.

Interleaving ARM with NEON. We do better than 6.25 cycles per byte by
using the basic ARM execution units to generate one block while NEON gen-
erates two blocks. Each round involves 23 NEON instructions for one block (20
instructions for four add-rotate-xor sequences, plus 3 permutation instructions),
23 NEON instructions for a second block, and 40 ARM instructions for a third
block. The extra ARM instructions reduce the inner loop to (2/3)6.875 ≈ 4.58
cycles per byte: the cycles for the loop are exactly the same but the loop produces
1.5× as much output.

We are pushing this technique extremely close to an important Cortex A8
limit. The limit is that the entire core decodes at most two instructions per
cycle, whether the instructions are ARM instructions or NEON instructions.
The 880 cycles that we spend for 128 NEON output bytes have 1760 instruction
slots, while we use only 920 NEON instructions, leaving 840 free slots; we use
800 of these slots for ARM instructions that generate 64 additional output bytes,
and an additional 35 slots for loop control to avoid excessive code size. (Register
pressure forced us to spill the loop counter, and each branch instruction has a
hidden cost of 3 slots; we ended up unrolling 4 rounds.) Putting even marginally
more work on the ARM unit would slow down the NEON processing, and an easy
quantitative analysis shows that this would slow down the cipher as a whole.

The same limit makes ARM instructions far less effective for, e.g., the compu-
tations modulo 2255 − 19 discussed later in this paper. These computations are
large enough that they require many NEON loads and stores alongside arith-
metic, often consuming both of the instruction slots available in a cycle. There
are still some slots for ARM instructions, but these computations require an
even larger number of ARM loads and stores, leaving very few slots for ARM



NEON Crypto 329

arithmetic instructions. Furthermore, these computations are dominated by mul-
tiplications rather than rotations, and even full-speed ARM multiplications have
only a fraction of the power of NEON multiplications.

Minimizing Overhead. The above discussion concentrates on the performance
of the Salsa20 inner loop, but there are also overheads for initializing and final-
izing each block, reading plaintext, and generating ciphertext.

The 64-byte Salsa20 output block consists of four vectors x0 x1 x2 x3, x4
x5 x6 x7, x8 x9 x10 x11, and x12 x13 x14 x15 that must be xor’ed with
plaintext to produce ciphertext. NEON uses 0.125 cycles/byte to read poten-
tially unaligned plaintext, and 0.125 cycles/byte to write potentially unaligned
ciphertext, for an overhead of 0.25 cycles/byte; ARM is slower. It should be pos-
sible to reduce this overhead, at some cost in code size, by overlapping memory
access with computation, but we have not yet done this.

The Salsa20 inner loop naturally uses and produces “diagonal” vectors x0 x5

x10 x15, x4 x9 x13 x3, etc. Converting these diagonal vectors to the output
vectors x0 x1 x2 x3 etc. poses an interesting challenge for NEON’s permutation
instructions. We use the following short sequence of instructions (and gratefully
acknowledge optimization assistance from Tanja Lange):

r0 = ... # x0 x5 x10 x15

r4 = ... # x4 x9 x14 x3

r12 = ... # x12 x1 x6 x11

r8 = ... # x8 x13 x2 x7

t4 = r0[1] r4[0] t4[2,3] # x5 x4 - -

t12 = t12[0,1] r0[3] r4[2] # - - x15 x14

r0 = (abab & r0) | (~abab & r12) # x0 x1 x10 x11

t4 = t4[0,1] r8[3] r12[2] # x5 x4 x7 x6

t12 = r8[1] r12[0] t12[2,3] # x13 x12 x15 x14

r8 = (abab & r8) | (~abab & r4) # x8 x9 x2 x3

r4 = t4[1]t4[0]t4[3]t4[2] # x4 x5 x6 x7

r12 = t12[1]t12[0]t12[3]t12[2] # x12 x13 x14 x15

r0 r8 = r0[0] r8[1] r8[0] r0[1] # x0 x1 x2 x3 x8 x9 x10 x11

There are 7 single-cycle permutations here, consuming 0.11 cycles/byte, and
2 two-cycle arithmetic instructions (using abab) interleaved with the permuta-
tions. Similar comments apply to block initialization. These and other overheads
increase the overall encryption costs to 5.60 cycles/byte.

4 Authenticate Using a Shared Secret Key:
2.30 Cycles/Byte for Poly1305

This section explains how to compute the Poly1305 message-authentication code
[5] at 2.30 Cortex A8 cycles/byte: e.g., 2.78 Gbps on an 800MHz core. Authen-
ticated encryption with Salsa20 and Poly1305 takes just 7.90 cycles/byte.

For comparison, [29] reports 50 Cortex A8 cycles/byte for AES-GCM and
28.9 cycles/byte for its proposed AES-OCB3; compared to the 25.4 cycles/byte



330 D.J. Bernstein and P. Schwabe

of AES-CTR encryption, authentication adds 25 or 3.5 cycles/byte respectively.
GCM, OCB3, and Poly1305 guarantee that attacks are as difficult as breaking
the underlying cipher, with similar quantitative security bounds. Another ap-
proach, without this guarantee, is HMAC using a hash function; the Cortex A8
speed leaders in the eBASH hash-function benchmarks [12] are MD5 at 6.04
cycles/byte, Edon-R at 9.76 cycles/byte, Shabal at 12.94 cycles/byte, BMW at
13.55 cycles/byte, and Skein at 15.26 cycles/byte.

One of these authentication speeds, the “free” 3.5-cycle/byte authentication in
OCB3, is within a factor of 2 of our Poly1305 speed. However, OCB3 also has two
important disadvantages. First, OCB3 cannot be combined with a fast stream
cipher such as Salsa20—it requires a block cipher, as discussed in [29]. Second,
rejecting an OCB3 forgery requires taking the time to decrypt the forgery, a full
28.9 cycles/byte; Poly1305 rejects forgeries an order of magnitude more quickly.

Review of Poly1305. Poly1305 reads a one-time 32-byte secret key and a
message of any length. It chops the message into 128-bit little-endian integers
(and a final b-bit integer with b ≤ 128), adds 2128 to each integer (and 2b to the
final integer) to obtain components m[0],m[1], . . . ,m[� − 1], and produces the
16-byte authenticator

(((m[0]r� +m[1]r�−1 + · · ·+m[�− 1]r) mod 2130 − 5) + s) mod 2128

where r and s are components of the secret key. “One time” has the same
meaning as for a one-time pad: each message has a new key. If these one-time
keys are truly random then the attacker is reduced to blind guessing; see [5] for
quantitative bounds on the attacker’s forgery chance. If these keys are instead
produced as cipher outputs from a long-term key then security relies on the
presumed difficulty of distinguishing the cipher outputs from random.

Readers familiar with the GCM authenticated-encryption mode [32] will rec-
ognize that Poly1305 shares the polynomial-evaluation structure of the GMAC
authenticator inside GCM. The general structure was introduced by den Boer
[18], Johansson, Kabatianskii, and Smeets [24], and independently Taylor [43];
concrete examples include [39], [34], [4], [28], and [27]. But these proposals dif-
fer in many details, notably the choice of finite field: a field of size 2128 for GCM,
for example, and integers modulo 2130 − 5 for Poly1305.

Efficient authentication in software relies primarily on fast multiplication in
this field, and secondarily on fast conversion of message bytes into elements of
the field. Efficient authentication under a one-time key (addressing the secu-
rity issues discussed in [4, Section 8, Notes], [8, Sections 2.4–2.5], [21], [14],
etc.) means that one cannot afford to precompute large tables of multiples of
r; we count the costs of all precomputation. Avoiding the possibility of cache-
timing attacks means that one cannot use variable-index table lookups; see, e.g.,
the discussion of GCM security in [23, Section 2.3].

Multiplication mod 2130 − 5 on NEON. We represent an integer f
modulo 2130 − 5 in radix 226 as f0 + 226f1 + 252f2 + 278f3 + 2104f4. At the end
of the computation we reduce each fi below 226, and reduce f to the



NEON Crypto 331

interval
{
0, 1, . . . , 2130 − 6

}
, but earlier in the computation we use standard lazy-

reduction techniques, allowing wider ranges of f and of fi.
The most attractive NEON multipliers are the paired 32-bit multipliers, which

as discussed in Section 2 produce two 64-bit products every two cycles, including
free additions. The product of f0+226f1+· · · and g0+226g1+· · · is h0+226h1+· · ·
modulo 2130 − 5 where

h0 = f0g0 + 5f1g4 + 5f2g3 + 5f3g2 + 5f4g1,

h1 = f0g1 + f1g0 + 5f2g4 + 5f3g3 + 5f4g2,

h2 = f0g2 + f1g1 + f2g0 + 5f3g4 + 5f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 5f4g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0,

all of which are smaller than 264/195 if each fi and gi is bounded by 226. Ev-
idently somewhat larger inputs fi and gi, products of sums of inputs, sums of
several outputs, etc. do not pose any risk of 64-bit overflow. This computa-
tion (performed from right to left to absorb all sums into products) involves 25
generic multiplications and 4 multiplications by 5, but it is better to eliminate
the multiplications by 5 in favor of precomputing 5g1, 5g2, 5g3, 5g4, in part be-
cause those are 32-bit multiplications and in part because a multiplication input
is often reused.

Rather than vectorizing within a message block, and having to search for 12
convenient pairs of 32-bit multiplications in the pattern of 25 multiplications
shown above, we simply vectorize across two message blocks, using a well-known
parallelization of Horner’s rule. For example, for � = 10, we compute

((((m[0]r2 +m[2])r2 +m[4])r2 +m[6])r2 +m[8])r2

+ ((((m[1]r2 +m[3])r2 +m[5])r2 +m[7])r2 +m[9])r

by starting with the vector (m[0],m[1]), multiplying by the vector (r2, r2), adding
(m[2],m[3]), multiplying by (r2, r2), etc. The integer m[0] is actually represented
as five 32-bit words, so the vector (m[0],m[1]) is actually represented as five vec-
tors of 32-bit words. The 25 multiplications shown above, times two blocks, then
trivially use 25 NEON multiplication instructions costing 50 cycles, i.e., 1.5625
cycles per byte. There are, however, also overheads for reading the message and
reducing the product, as discussed below.

Reduction. The product obtained above can be safely added to a new message
block but must be reduced before it can be used as input to another multipli-
cation. To reduce a large coefficient h0, we carry h0 → h1; this means replacing
(h0, h1) with (h0 mod 226, h1 +

⌊
h0/2

26
⌋
). Similar comments apply to the other

coefficients. Carrying h4 → h0 means replacing (h4, h0) with (h4 mod 226, h0 +
5
⌊
h4/2

26
⌋
), again taking advantage of the sparsity of 2130 − 5.

NEON uses 1 cycle for a pair of 64-bit shifts, 1 cycle for a pair of 64-bit masks,
and 1 cycle for a pair of 64-bit additions, for a total of 3 cycles for a pair of carries
(plus 2 cycles for h4 → h0). A chain of six carries h0 → h1 → h2 → h3 → h4 →



332 D.J. Bernstein and P. Schwabe

h0 → h1 is adequate for subsequent multiplications: it leaves h1 below 226 + 213

and each other hi below 226. However, each step in this chain has latency at
least 5, and even aggressive interleaving of carries into the computations of hi

would eliminate only a few of the resulting idle cycles. We instead carry h0 → h1

and h3 → h4, then h1 → h2 and h4 → h0, then h2 → h3 and h0 → h1, then
h3 → h4, spending 3 cycles to eliminate latency problems. The selection of initial
indices (0, 3) here allows the longer carry h4 → h0 to overlap two independent
carries h1 → h2 → h3; we actually interleave h0 → h1 → h2 → h3 → h4 with
h3 → h4 → h0 → h1, being careful to keep the separate uses of hi away from
each other.

This approach consumes 23 cycles for two blocks, i.e., 0.71875 cycles per byte.
As message lengths grow it becomes better to retreat from Horner’s method, for
example computing

((m[0]r4 +m[2]r2 +m[4])r4 +m[6]r2 +m[8])r2

+ ((m[1]r4 +m[3]r2 +m[5])r4 +m[7]r2 +m[9])r

by starting with (m[0],m[1]) and (m[2],m[3]), multiplying by (r4, r4) and (r2, r2)
respectively, adding, adding (m[4],m[5]), then reducing, etc. This eliminates half
of the reductions at the expense of extending the precomputation from (r2, r2)
to (r4, r4). One can easily eliminate more reductions with more precomputation,
but one pays for precomputation linearly in both time and space, while the
benefit becomes smaller and smaller.

For comparison, [4, Section 6] precomputed 97 powers of r for a polynomial
evaluation in another field. The number 97 was chosen to just barely avoid
overflow of sums of 97 intermediate values; [4] did not count the cost of precom-
putation. Of course, when we report long-message performance figures we blind
ourselves to any constant amount of precomputation, but beyond those figures
we are also careful to avoid excessive precomputation (and, for similar reasons,
excessive code size). We thus settled on eliminating half of the reductions.

Reading the Message. The inner loop in our computation, with half reductions
as described above, computes fr4+m[i]r2+m[i+2]. One input is an accumulator
f ; the output is written on top of f for the next pass through the loop. Two
more inputs are r2 and r4, both precomputed. The last two inputs are message
blocks m[i] and m[i+2]; the inner loop loads these blocks and converts them to
radix 226. The following paragraphs discuss the costs of this conversion.

The same computations are carried out in parallel on m[i + 1] and m[i + 3],
using another accumulator. We suppress further mention of this straightforward
vectorization: for example, when we say below that NEON takes 0.5 cycles for a
64-bit shift involved in m[i], what we actually mean is that NEON takes 1 cycle
for a pair of 64-bit shifts, where the first shift is used for m[i] and the second is
used for m[i+ 1].

Loading m[i] produces a vector (m0,m1,m2,m3) representing the integer
m0 + 232m1 + 264m2 + 296m3. Our goal here is to represent the same integer
(plus 2128) in radix 226 as c0+226c1+252c2+278c3+2104c4. A shift of the 64 bits



NEON Crypto 333

(m2,m3) down by 40 bits produces exactly c4. A shift of (m2,m3) down by 14
bits does not produce exactly c3, and a shift of (m1,m2) down by 20 bits does
not produce exactly c2, but a single 64-bit mask then produces (c2, c3). Similar
comments apply to (c0, c1), except that c0 does not require a shift.

Overall there are seven 64-bit arithmetic instructions here (four shifts, two
masks, and one addition to c4 to handle the 2128), consuming 3.5 cycles for
each 16-byte block. There is also a two-cycle (potentially unaligned) load, along
with just six single-cycle permutation instructions; NEON has an arithmetic
instruction that combines a 64-bit right shift (by up to 32 bits) with an extraction
of the bottom 32 bits of the result, eliminating some 64-bit-to-32-bit shuffling.

The second message block m[i+2] has a different role in fr4+m[i]r2+m[i+2]:
it is added to the output rather than the input. We take advantage of this by
loading m[i+2] into a vector (m0,m1,m2,m3) and adding m0+232m1+264m2+
296m3 into a multiplication result h0 + 226h1 + 252h2 + 278h3 + 2104h4 before
carrying the result. This means simply adding m0 into h0, adding 26m1 into h1,
etc. We absorb the additions into multiplications by scheduling m[i + 2] before
the computation of h. The only remaining costs for m[i+2] are a few shifts such
as 26m1, one operation to add 2128, and various permutations.

The conversion of m[i] and m[i + 2] costs, on average, 0.171875 cycles/byte
for arithmetic instructions. Our total cost for NEON arithmetic in Poly1305 is
2.09375 cycles/byte: 1.5625 cycles/byte for one multiplication per block, 0.359375
cycles/byte for half a reduction per block, and 0.171875 cycles/byte for input
conversion. We have not yet managed to perfectly schedule the inner loop: right
now it takes 147 cycles for 64 bytes, slightly above the 134 cycles of arithmetic,
so our software computes Poly1305 at 2.30 cycles/byte.

5 Compute a Shared Secret Key for a New Public Key:
527102 Cycles for Curve25519;
Sign and Verify:
244655 and 624846 Cycles for Ed25519

This section explains how to compute the Curve25519 Diffie–Hellman function
[6], obtaining a 32-byte shared secret from Alice’s 32-byte secret key and Bob’s
32-byte public key, in 527102 Cortex A8 cycles: e.g., 1517/second on an 800MHz
core. This section also explains how to sign and verify messages in the Ed25519
public-key signature system [10] in, respectively, 244655 and 624846 Cortex A8
cycles: e.g., 3269/second and 1280/second on an 800MHz core. Ed25519 public
keys are 32 bytes, and signatures are 64 bytes.

For comparison, openssl speed on the same machine reports

• 424.2 RSA-2048 verifications per second (1.9 million cycles),
• 11.1 RSA-2048 signatures per second (72 million cycles),
• 88.6 NIST P-256 Diffie–Hellman operations per second (9.0 million cycles),
• 388.8 NIST P-256 signatures per second (2.1 million cycles), and
• 74.5 NIST P-256 verifications per second (10.7 million cycles).



334 D.J. Bernstein and P. Schwabe

Morozov, Tergino, and Schaumont [33] report two speeds for “secp224r1” Diffie–
Hellman: 15609 microseconds on a 500MHz Cortex A8 (7.8 million cycles), and
6043 microseconds on a 360MHz DSP (2 million DSP cycles) included in the
same CPU, a TI OMAP 3530. Curve25519 and Ed25519 have a higher security
level than secp224r1 and 2048-bit RSA; it is also not clear which of the previous
speeds include protection against side-channel attacks.

Review of Curve25519 and Ed25519. Curve25519 and Ed25519 are elliptic-
curve systems. Key generation is fixed-base-point single-scalar multiplication:
Bob’s public key is a multiple B = bP of a standard base point P on a standard
curve. Bob’s secret key is the integer b.

Curve25519’s Diffie–Hellman function is variable-base-point single-scalar mul-
tiplication: Alice, given Bob’s public key B, computes aB where a is Alice’s se-
cret key. The secret shared by Alice and Bob is simply a hash of aB; this secret
is used, for example, as a long-term key for Salsa20, which in turn is used to
generate encryption pads and Poly1305 authentication keys.

Signing in Ed25519 consists primarily of fixed-base-point single-scalar multi-
plication. (We make the standard assumption that messages are short; hashing
time is the bottleneck for very long messages. Our measurements use 59-byte
messages, as in [12].) Signing is much faster than Diffie–Hellman: it exploits
precomputed multiples of P in various standard ways. Verification in Ed25519 is
slower than Diffie–Hellman: it consists primarily of double-scalar multiplication.

The Curve25519 elliptic curve is the Montgomery curve y2 = x3+486662x2+x
modulo 2255 − 19, with a unique point of order 2. The Ed25519 elliptic curve is
the twisted Edwards curve −x2+y2 = 1−(121665/121666)x2y2 modulo 2255−19,
also with a unique point of order 2. These two curves have an “efficient birational
equivalence” and therefore have the same security.

Montgomery curves are well known to allow efficient variable-base-point single-
scalar multiplication. Edwards curves are well known to allow a wider variety of
efficient elliptic-curve operations, including double-scalar multiplication. These
fast scalar-multiplication methods are “complete”: they are sequences of addi-
tions, multiplications, etc. that always produce the right answer, with no need
for comparisons, branches, etc. Completeness was proven by Bernstein [6] for
single-scalar multiplication on any Montgomery curve having a unique point of
order 2, and by Bernstein and Lange [11] for arbitrary group operations on any
Edwards curve having a unique point of order 2.

The main loop in Curve25519, executed 255 times, has four additions of inte-
gers modulo 2255 − 19, four subtractions, two conditional swaps (which must be
computed with arithmetic rather than branches or variable array lookups), four
squarings, one multiplication by the constant 121666, and five generic multipli-
cations. There is also a smaller final loop (a field inversion), consisting of 254
squarings and 11 multiplications. Similar comments apply to Ed25519 signing
and Ed25519 verification.

Multiplication mod 2255− 19 on NEON. We use radix 225.5, imitating the
floating-point representation in [6, Section 4] but with unscaled integers rather
than scaled floating-point numbers: we represent an integer f modulo 2255−19 as



NEON Crypto 335

f0 + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9

where, as in Section 4, the allowable ranges of fi vary through the computation.
We use signed integers fi rather than unsigned integers: for example, when

we carry f0 → f1 we reduce f0 to the range [−225, 225] rather than [0, 226].
This complicates carries, replacing a mask with a shift and subtraction, but
saves one bit in products of reduced coefficients, allowing us to safely compute
various products of sums without carrying the sums. This was unnecessary in
the previous section, in part because the 5 in 2130 − 5 is smaller than the 19 in
2255 − 19, in part because 130 is smaller than 255, and in part because the sums
of inputs and outputs naturally appearing in the previous section have fewer
terms than the sums that appear in these elliptic-curve computations.

The product of f0 + 226f1 + 251f2 + · · · and g0 + 226g1 + 251g2 + · · · is h0 +
226h1 + 251h2 + · · · modulo 2255 − 19 where

h0=f0g0+38f1g9+19f2g8+38f3g7+19f4g6+38f5g5+19f6g4+38f7g3+19f8g2+38f9g1

h1=f0g1+ f1g0+19f2g9+19f3g8+19f4g7+19f5g6+19f6g5+19f7g4+19f8g3+19f9g2

h2=f0g2+ 2f1g1+ f2g0+38f3g9+19f4g8+38f5g7+19f6g6+38f7g5+19f8g4+38f9g3

h3=f0g3+ f1g2+ f2g1+ f3g0+19f4g9+19f5g8+19f6g7+19f7g6+19f8g5+19f9g4

h4=f0g4+ 2f1g3+ f2g2+ 2f3g1+ f4g0+38f5g9+19f6g8+38f7g7+19f8g6+38f9g5

h5=f0g5+ f1g4+ f2g3+ f3g2+ f4g1+ f5g0+19f6g9+19f7g8+19f8g7+19f9g6

h6=f0g6+ 2f1g5+ f2g4+ 2f3g3+ f4g2+ 2f5g1+ f6g0+38f7g9+19f8g8+38f9g7

h7=f0g7+ f1g6+ f2g5+ f3g4+ f4g3+ f5g2+ f6g1+ f7g0+19f8g9+19f9g8

h8=f0g8+ 2f1g7+ f2g6+ 2f3g5+ f4g4+ 2f5g3+ f6g2+ 2f7g1+ f8g0+38f9g9

h9=f0g9+ f1g8+ f2g7+ f3g6+ f4g5+ f5g4+ f6g3+ f7g2+ f8g1+ f9g0.

The extra factors of 2 appear because 225.5 is not an integer. We precompute
2f1, 2f3, 2f5, 2f7, 2f9 and 19g1, 19g2, . . . , 19g9; each hi is then a sum of ten prod-
ucts of precomputed quantities.

Most multiplications appear as independent pairs, computing fg and f ′g′ in
parallel, in the elliptic-curve formulas we use. We vectorize across these multipli-
cations: we start from 20 64-bit vectors such as (f0, f

′
0) and (g0, g

′
0), precompute

14 64-bit vectors such as (2f1, 2f
′
1) and (19g1, 19g

′
1), and then accumulate 10

128-bit vectors such as (h0, h
′
0). By scheduling operations carefully we fit these

54 64-bit quantities into the 32 available 64-bit registers with a moderate number
of loads and stores.

Some multiplications do not appear as pairs. For those cases we vectorize
within one multiplication by the following strategy. Accumulate the vectors
(f0g0, 2f1g1) and (19f2g8, 38f3g9) and (19f4g6, 38f5g7) and (19f6g4, 38f7g5) and
(19f8g2, 38f9g3) into (h0, h2); accumulate (f0g2, 2f1g3) etc. into (h2, h4); and
so on through (h8, h0). Also accumulate (f1g2, 19f8g3), (f3g0, f0g1), etc. into
(h3, h1); accumulate (f1g4, 19f8g5) etc. into (h5, h3); and so on through (h1, h9).
Each vector added here is a product of two of the following 27 precomputed
vectors:



336 D.J. Bernstein and P. Schwabe

• (f0, 2f1), (f2, 2f3), (f4, 2f5), (f6, 2f7), (f8, 2f9);
• (f1, f8), (f3, f0), (f5, f2), (f7, f4), (f9, f6);
• (g0, g1), (g2, g3), (g4, g5), (g6, g7);
• (g0, 19g1), (g2, 19g3), (g4, 19g5), (g6, 19g7), (g8, 19g9);
• (19g2, 19g3), (19g4, 19g5), (19g6, 19g7), (19g8, 19g9);
• (19g2, g3), (19g4, g5), (19g6, g7), (19g8, g9).

We tried several other strategies, pairing inputs and outputs in various ways,
before settling on this strategy. All of the other strategies used more precomputed
vectors, requiring more loads and stores.

Reduction, Squaring, etc. Reduction follows an analogous strategy to Sec-
tion 4. One complication is that each carry has an extra operation, as mentioned
above. Another complication for vectorizing a single multiplication is that the
shift distances are sometimes 26 bits and sometimes 25 bits; we vectorize carry-
ing (h0, h4) → (h1, h5), for example, but would not have been able to vectorize
carrying (h0, h5) → (h1, h6).

For squaring, like multiplication, we vectorize across two independent opera-
tions when possible, and otherwise vectorize within one operation. Squarings are
serialized in square-root computations (for decompressing short signatures) and
in inversions (for converting scalar-multiplication results to affine coordinates),
but the critical bottlenecks are elliptic-curve operations, and squarings come in
convenient pairs in all of the elliptic-curve formulas that we use.

In the end arithmetic consumes 150 cycles in generic multiplication (called
1286 times in Curve25519), 105 cycles in squaring (called 1274 times), 67 cycles
in multiplication by 121666 (called 255 times), 3 cycles in addition (called 1020
times), 3 cycles in subtraction (called 1020 times), and 12 cycles in conditional
swaps (called 512 times), explaining fewer than 400000 cycles. The most impor-
tant source of overhead in our current Curve25519 performance, 527102 cycles,
is non-arithmetic instructions at the beginning and end of each function. We
are working on addressing this by inlining all functions into the main loop and
scheduling the main loop as a whole, and we anticipate then coming much closer
to the lower bound, as in Salsa20 and Poly1305.

Similar comments apply to Ed25519. When we submitted this paper, many
Ed25519 cycles (about 50000 cycles in signing and 25000 in verification) were
consumed by the SHA-512 implementation selected by SUPERCOP [12]; but a
subsequent OpenSSL revision drastically improved SHA-512 performance on the
Cortex A8. We have not bothered investigating SHA-512 performance in more
detail: the Ed25519 paper [10] recommends switching to Ed25519-SHA-3.

References

[1] — (no editor): 9th IEEE symposium on application specific processors. Institute
of Electrical and Electronics Engineers (2011). See [33]

[2] Aciiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache at-
tacks. In: CHES 2010 [31], pp. 110–124 (2010) Citations in this document: §1



NEON Crypto 337

[3] ARM Limited: Cortex-A8 technical reference manual, revision r3p2 (2010),
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

ddi0344k/index.html. Citations in this document: §2
[4] Bernstein, D.J.: Floating-point arithmetic and message authentication (1999),

http://cr.yp.to/papers.html#hash127.
Citations in this document: §4, §4, §4, §4

[5] Bernstein, D.J.: The Poly1305-AES message-authentication code. In: FSE 2005
[20], pp. 32–49 (2005), http://cr.yp.to/papers.html#poly1305. Citations in
this document: §1, §4, §4

[6] Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: PKC 2006
[49], pp. 207–228 (2006), http://cr.yp.to/papers.html#curve25519. Citations
in this document: §1, §5, §5, §5

[7] Bernstein, D.J.: qhasm software package (2007), http://cr.yp.to/qhasm.html.
Citations in this document: §2

[8] Bernstein, D.J.: Polynomial evaluation and message authentication (2007),
http://cr.yp.to/papers.html#pema. Citations in this document: §4

[9] Bernstein, D.J.: The Salsa20 family of stream ciphers. In: [37], pp. 84–97 (2008),
http://cr.yp.to/papers.html#salsafamily. Citations in this document: §1, §3

[10] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: CHES 2011 [36] (2011),
http://eprint.iacr.org/2011/368. Citations in this document: §1, §5, §5

[11] Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Asiacrypt 2007 [30], pp. 29–50 (2007), http://eprint.iacr.org/2007/286.
Citations in this document: §5

[12] Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, accessed 5 March 2012 (2012), http://bench.cr.yp.to.
Citations in this document: §1, §3, §4, §5, §5

[13] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryp-
tographic library (2011), http://eprint.iacr.org/2011/646. Citations in this
document: §1

[14] Black, J., Cochran, M.: MAC reforgeability. In: FSE 2009 [19], pp. 345–362
(2009), http://eprint.iacr.org/2006/095. Citations in this document: §4

[15] Canteaut, A., Viswanathan, K. (eds.): Progress in cryptology—INDOCRYPT
2004, 5th international conference on cryptology in India, Chennai, India, Decem-
ber 20–22, 2004, proceedings. LNCS, vol. 3348. Springer, Heidelberg (2004) ISBN
3-540-24130-2. See [32]

[16] Clavier, C., Gaj, K. (eds.): Cryptographic hardware and embedded systems—
CHES 2009, 11th international workshop, Lausanne, Switzerland, September 6–9,
2009, proceedings. LNCS, vol. 5747. Springer, Heidelberg (2009) ISBN 978-3-642-
04137-2. See [23]

[17] Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell Broadband
Engine. In: Africacrypt 2009 [35], pp. 368–385 (2009), http://cryptojedi.org/
users/peter/#celldh. Citations in this document: §1

[18] den Boer, B.: A simple and key-economical unconditional authentication scheme.
Journal of Computer Security 2, 65–71 (1993) ISSN 0926–227X. Citations in this
document: §4

[19] Dunkelman, O. (ed.): Fast software encryption, 16th international workshop, FSE
2009, Leuven, Belgium, February 22–25, 2009, revised selected papers. LNCS,
vol. 5665. Springer, Heidelberg (2009) ISBN 978-3-642-03316-2. See [14]



338 D.J. Bernstein and P. Schwabe

[20] Gilbert, H., Handschuh, H. (eds.): Fast software encryption: 12th international
workshop, FSE 2005, Paris, France, February 21–23, 2005, revised selected papers.
LNCS, vol. 3557. Springer, Heidelberg (2005) ISBN 3-540-26541-4. See [5]

[21] Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function
based MAC algorithms. In: CRYPTO 2008 [46], pp. 144–161 (2008), https://
www.iacr.org/archive/crypto2008/51570145/51570145.pdf. Citations in this
document: §4

[22] Helleseth, T. (ed.): Advances in cryptology—EUROCRYPT ’93, workshop on
the theory and application of cryptographic techniques, Lofthus, Norway, May
23–27, 1993, proceedings. LNCS, vol. 765. Springer, Heidelberg (1994) ISBN
3-540-57600-2. See [24]

[23] Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: CHES
2009 [16], pp. 1–17 (2009), http://eprint.iacr.org/2009/129. Citations in this
document: §3, §4

[24] Johansson, T., Kabatianskii, G., Smeets, B.J.M.: On the relation between A-
codes and codes correcting independent errors. In: EUROCRYPT ’93 [22],
pp. 1–11 (1994) Citations in this document: §4

[25] Joux, A. (ed.): Fast software encryption—18th international workshop, FSE
2011, Lyngby, Denmark, February 13–16, 2011, revised selected papers. LNCS,
vol. 6733. Springer, Heidelberg (2011) ISBN 978-3-642-21701-2. See [29]

[26] Koblitz, N. (ed.): Advances in cryptology—CRYPTO ’96. LNCS, vol. 1109.
Springer, Heidelberg (1996). See [39]

[27] Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional au-
thenticated encryption mode. In: FSE 2004 [38], pp. 408–426 (2004), http://
eprint.iacr.org/2003/106. Citations in this document: §4

[28] Krovetz, T., Rogaway, P.: Fast universal hashing with small keys and no prepro-
cessing: the PolyR construction. In: ICISC 2000 [48], pp. 73–89 (2001),
http://www.cs.ucdavis.edu/~rogaway/papers/poly.htm. Citations in this doc-
ument: §4

[29] Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FSE 2011 [25], pp. 306–327 (2011), http://www.cs.ucdavis.edu/
~rogaway/papers/ae.pdf. Citations in this document: §3, §4, §4

[30] Kurosawa, K. (ed.): Advances in cryptology—ASIACRYPT 2007, 13th interna-
tional conference on the theory and application of cryptology and information
security, Kuching, Malaysia, December 2–6, 2007, proceedings. LNCS, vol. 4833.
Springer, Heidelberg (2007) ISBN 978-3-540-76899-9. See [11]

[31] Mangard, S., Standaert, F.-X. (eds.): Cryptographic hardware and embedded sys-
tems, CHES 2010, 12th international workshop, Santa Barbara, CA, USA, Au-
gust 17–20, 2010, proceedings. LNCS, vol. 6225. Springer, Heidelberg (2010) ISBN
978-3-642-15030-2. See [2]

[32] McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
mode (GCM) of operation. In: INDOCRYPT 2004 [15], pp. 343–355 (2004),
http://eprint.iacr.org/2004/193. Citations in this document: §4

[33] Morozov, S., Tergino, C., Schaumont, P.: System integration of elliptic curve
cryptography on an OMAP Platform. In: SASP 2011 [1], pp. 52–57 (2011),
http://rijndael.ece.vt.edu/schaum/papers/2011sasp.pdf. Citations in this
document: §5

[34] Nevelsteen, W., Preneel, B.: Software performance of universal hash functions.
In: EUROCRYPT ’99 [41], pp. 24–41 (1999) Citations in this document: §4



NEON Crypto 339

[35] Preneel, B. (ed.): Progress in cryptology—AFRICACRYPT 2009, second interna-
tional conference on cryptology in Africa, Gammarth, Tunisia, June 21–25, 2009,
proceedings. LNCS, vol. 5580. Springer, Heidelberg (2009). See [17]

[36] Preneel, B., Takagi, T. (eds.): Cryptographic hardware and embedded systems—
CHES 2011, 13th international workshop, Nara, Japan, September 28–October 1,
2011, proceedings. LNCS. Springer, Heidelberg (2011) ISBN 978-3-642-23950-2.
See [10]

[37] Robshaw, M., Billet, O. (eds.): New stream cipher designs. LNCS, vol. 4986.
Springer, Heidelberg (2008) ISBN 978-3-540-68350-6. See [9]

[38] Roy, B.K., Meier, W. (eds.): Fast software encryption, 11th international work-
shop, FSE 2004, Delhi, India, February 5–7, 2004, revised papers. LNCS,
vol. 3017. Springer, Heidelberg (2004) ISBN 3-540-22171-9. See [27]

[39] Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: CRYPTO ’96 [26], pp. 313–328 (1996), http://www.shoup.net/
papers. Citations in this document: §4

[40] Sobole, É.: Calculateur de cycle pour le Cortex A8 (2012),
http://pulsar.webshaker.net/ccc/index.php. Citations in this document: §2

[41] Stern, J. (ed.): Advances in cryptology—EUROCRYPT ’99. LNCS, vol. 1592.
Springer, Heidelberg (1999) ISBN 3-540-65889-0. MR 2000i:94001. See [34]

[42] Stinson, D.R. (ed.): Advances in cryptology—CRYPTO ’93: 13th annual in-
ternational cryptology conference, Santa Barbara, California, USA, August
22–26, 1993, proceedings. LNCS, vol. 773. Springer, Heidelberg (1994) ISBN
3-540-57766-1, 0-387-57766-1. See [43]

[43] Taylor, R.: An integrity check value algorithm for stream ciphers. In:
CRYPTO ’93 [42], pp. 40–48 (1994) Citations in this document: §4

[44] Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. Journal of Cryptology 23, 37–71 (2010), http://people.csail.mit.
edu/tromer/papers/cache-joc-official.pdf. Citations in this document: §1

[45] Ulevitch, D.: DNSCrypt—critical, fundamental, and about time (2011),
http://blog.opendns.com/2011/12/06/dnscrypt-%E2%80%93-critical-

fundamental-and-about-time/ Citations in this document: §1
[46] Wagner, D. (ed.): Advances in cryptology—CRYPTO 2008, 28th annual interna-

tional cryptology conference, Santa Barbara, CA, USA, August 17–21, 2008, pro-
ceedings. LNCS, vol. 5157. Springer, Heidelberg (2008) ISBN 978-3-540-85173-8.
See [21]

[47] Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Proceedings of Financial Cryptography 2012, to appear (2012),
http://fc12.ifca.ai/pre-proceedings/paper_70.pdf. Citations in this docu-
ment: §1, §3

[48] Won, D. (ed.): Information security and cryptology—ICISC 2000, third inter-
national conference, Seoul, Korea, December 8–9, 2000, proceedings. LNCS,
vol. 2015. Springer, Heidelberg (2001) ISBN 3-540-41782-6. See [28]

[49] Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.): Public key cryptography—
9th international conference on theory and practice in public-key cryptography,
New York, NY, USA, April 24–26, 2006, proceedings. LNCS, vol. 3958. Springer,
Heidelberg (2006) ISBN 978-3-540-33851-2. See [6]


	NEON Crypto
	Introduction
	NEON Instructions and Speeds
	Encrypt Using a Shared Secret Key: 5.60 Cycles/Byte for Salsa20
	Authenticate Using a Shared Secret Key: 2.30 Cycles/Byte for Poly1305
	5 Compute a Shared Secret Key for a New Public Key:527102 Cycles for Curve25519;Sign and Verify:244655 and 624846 Cycles for Ed25519
	References




